Searching for the QCD critical point using Lee-Yang edge singularities

D. A. Clarke, F. Di Renzo, P. Dimopoulos, J. Goswami, C. Schmidt, S. Singh, K. Zambello

University of Utah

Muses Seminar, 5 Feb 2024

The lattice approach: No fermions

Want expected value of operator O.

▶ In lattice QCD, expectation values given by

$$\langle O \rangle = \frac{1}{\mathcal{Z}} \int \mathcal{D}U \, e^{-S(U)} \, O(U), \quad \mathcal{Z} \equiv \int \mathcal{D}U \, e^{-S(U)}$$

- Markov Chain Monte Carlo basic idea:
 - Each configuration generated depending on last one only
 - Accept new configuration with probability $\min\{1, e^{-\Delta S}\}$
 - \blacksquare Create a time series of measurements O_n of O
- ▶ The estimator for $\langle O \rangle$ on the lattice is

$$\bar{O} = \frac{1}{N_{\mathsf{conf}}} \sum_{n=1}^{N_{\mathsf{conf}}} O_n$$

A little more detail when there's fermions

$$\langle O \rangle \sim \int d\bar{\psi} d\psi e^{\bar{\psi}D\psi} \quad dU e^{-S(U)} O(U)$$

= $\int \det D \quad dU e^{-S(U)} O(U)$

Complication:

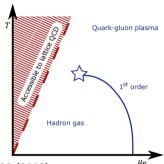
- ▶ $\det D \in \mathbb{R}$ when $\mu = 0$
- ▶ But if $\mu \neq 0$, it is in general complex...

The infamous problem

Trick: μ_B pure imaginary avoids sign problem; can analytically continue to $\mu_B \in \mathbb{R}^{1,2}$.

Trick: Expand pressure P/T^4 in $\mu_B/T^{3,4}$.

The latter is getting a bit too pricey. Popularity of resummation schemes^{5,6,7,8}.



¹P. de Forcrand and O. Philipsen, Nuclear Physics B, 642.1-2, 290–306 (2002).

D. A. Clarke

²M. D'Elia and M.-P. Lombardo, Phys. Rev. D, 67.1, 014505 (2003).

³C. R. Allton et al., Phys. Rev. D, 66.7, 074507 (2002).

⁴R. V. Gavai and S. Gupta, Phys. Rev. D, 68.3, 034506 (2003).

⁵S. Borsányi et al., Phys. Rev. Lett. 126.23, 232001 (2021).

⁶D. Bollweg et al., Phys. Rev. D, 105.7, 074511 (2022).

⁷S. Mitra, P. Hegde, and C. Schmidt, Phys. Rev. D, 106.3, 034504 (2022).

⁸S. Mondal, S. Mukherjee, and P. Hegde, Phys. Rev. Lett. 128.2, 022001 (2022).

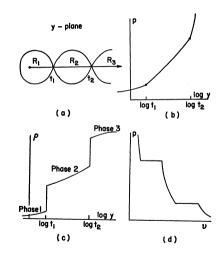
Lee-Yang theorem

Works where $\log \mathcal{Z}_{\rm QCD}$ is free of singularities.

Lee-Yang theorem⁹: Zeroes of the partition function that approach the real axis as $V \to \infty$ correspond to phase transitions.

Intuition: Indications of non-analyticities in P

- may hint at phase transitions
- ▶ or singularities in C
- constrain validity of Taylor series



⁹C. N. Yang and T. D. Lee, Phys. Rev. 87.3, 404–409 (1952).

Lee-Yang edges and extended analyticity

Ising: Generically have branch cuts on imaginary axis. (Pinch real axis at T_c .)

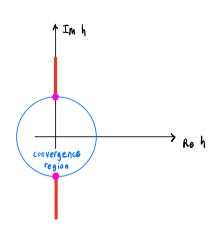
Lee-Yang edge (LYE): The singularities closest to real axis.

Extended analyticity conjecture¹⁰: LYE is the nearest singularity to the origin.

LYE position fixed at

$$z_c = |z_c| e^{\pm i\pi/2\beta\delta}$$

with $z \equiv th^{-1/\beta\delta}$ and critical exponents β , δ .



¹⁰P Fonseca and A Zamolodchikov, J. Stat. Phys. 110, 527–590 (2003).

Padé approximants

Want detailed information about singularities \Rightarrow rational functions,

$$R_n^m(x) \equiv \frac{\sum_{i=0}^m a_i x^i}{1 + \sum_{j=1}^n b_j x^j}.$$

Singularities captured or mimicked by zeros in denominator.

Let f have a formal Taylor series

$$f(x) = \sum_{k=0}^{\infty} c_k x^k.$$

Padé approximant of order [m, n]: R_n^m with coefficients so that it equals the Taylor series up to order m + n. Gives relationship between coefficients a_i , b_j , c_k .

Padé approximants

Things to think about with Padé:

- ► Theorem: Unique when it exists
- ▶ Theorem: [m,n] converges to f exactly as $m \to \infty$ when f has pole of order n
- Other properties deduced from numerical experiments
- ▶ Limited by number of known Taylor coefficients
- ▶ Only have up to 8^{th} order^{11,12} for $\log \mathcal{Z}_{QCD}$; difficultly far greater for higher orders¹³

D. A. Clarke

¹¹S. Borsanyi et al., J. High Energ. Phys. 2018.10, 205 (2018).

¹²D. Bollweg et al., Phys. Rev. D, 108.1, 014510 (2023).

¹³Computational requirements of HotQCD EoS exceed 2000 GPU-years and 2.4 PB.

Multi-point Padé approximants

Padé approximants you get by demanding¹⁴

$$R_n^m(x) = f^{m+n}(x) \equiv \sum_{i=0}^{m+n} c_k x^k.$$

Say we know Taylor series up to some order s. The Multi-point Padé is the ${\cal R}_n^m$ satisfying

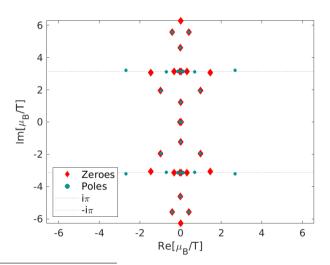
$$\left. \frac{\mathrm{d}^l R_n^m}{\mathrm{d}x^l} \right|_{x_i} = \left. \frac{\mathrm{d}^l f}{\mathrm{d}x^l} \right|_{x_i}$$

for N points x_i , $0 \le l < s - 1$. Some pros/cons:

- Need fewer Taylor coefficients!
- Less seems to be known about them...

 $^{^{14}}$ One expects corresponding relationships among derivatives of R and f.

Extracting a LYE¹⁵



¹⁵P. Dimopoulos et al., Phys. Rev. D, 105.3, 034513 (2022).

The strategy

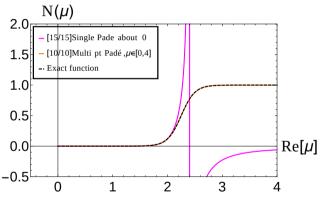
Roughly follow this procedure:

- 1. What transition are you interested in?
- 2. How should the singularities scale?
- 3. Lattice calculations at multiple, pure imaginary μ_B .
- 4. Estimate singularities with multi-point Padé.
- 5. Does scaling match expectation?
- 6. Analytically continue results to $\mu_B \in \mathbb{R}$.

Next: Why we trust it.

Test: 1-d Thirring model 16,17

Number density $N(\mu)$ can be worked out exactly.

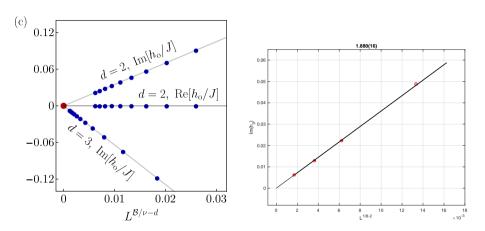


Multi-point captures the exact $N(\mu)$ well, outperforms single point.

¹⁶P. Dimopoulos et al., Phys. Rev. D, 105.3, 034513 (2022).

¹⁷F. Di Renzo, S. Singh, and K. Zambello, Phys. Rev. D, 103.3, 034513 (2021).

Test: 2-d Ising model^{18,19}



Reproduces correct scaling and critical exponents extremely well.

¹⁸A. Deger and C. Flindt, Phys. Rev. Research, 1.2, 023004 (2019).

¹⁹F. Di Renzo and S. Singh, PoS(LATTICE2022)148, (2023).

Test: The Roberge-Weiss transition²¹

 $\mathcal{Z}_{\mathrm{QCD}}$ at $\hat{\mu}_f = i\hat{\mu}_I$ has \mathbb{Z}_3 periodicity

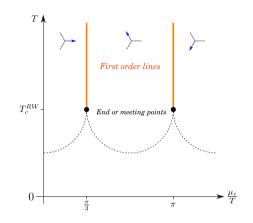
$$\hat{\mu}_I \rightarrow \hat{\mu}_I + 2\pi n/3$$

with $\hat{\mu} \equiv \mu/T.$ First order lines separate phases distinguished by Polyakov loop

$$P \sim \sum_{\vec{x}} \operatorname{tr} \prod_{\tau} U_4(\vec{x}, \tau).$$

Endpoint in 3-d, \mathbb{Z}_2 universality class. Critical exponents²⁰:

$$\beta = 0.3264, \quad \delta = 4.7898$$



²⁰S. El-Showk et al., J Stat Phys, 157.4-5, 869-914 (2014).

²¹F. Cuteri et al., Phys. Rev. D, 106.1, 014510 (2022).

Test: The Roberge-Weiss transition 22,23

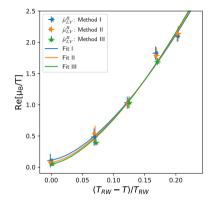
Lattice setup:

- ▶ 2+1 dynamical HISQ quarks
- $ightharpoonup m_s/m_l$ fixed to physical value
- $ightharpoonup N_{ au}=4$, 6 with $N_s/N_{ au}=6$

$$h \sim \hat{\mu}_B - i\pi$$
 $t \sim T - T_{\rm RW}$
 $z = th^{-1/\beta\delta}$ $z_c = |z_c|e^{\pm i\pi/2\beta\delta}$

$$\Rightarrow \operatorname{Re} \hat{\mu}_{\mathsf{LY}} = \pm \pi \left(\frac{z_0}{|z_c|} \right)^{\beta \delta}$$

Taking $|z_c| = 2.43$ yields $9.1 \lesssim z_0 \lesssim 9.4$.



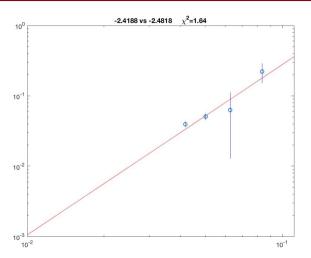
Taking $T_{\rm RW}^{N_{\tau}=4}=201.4$ MeV yields $\beta\delta\approx 1.5635$, compare 1.563495(15).

Prelim: $T_{\rm RW}=211.1(3.1)$ MeV, compare 208(5) MeV.

²²C. Bonati et al., Phys. Rev. D, 93.7, 074504 (2016).

²³G. Johnson et al., Phys. Rev. D, 107.11, 116013 (2023).

Test: Roberge-Weiss FSS



FSS scaling of $\operatorname{Re} \hat{\mu}_{\mathsf{LY}}$ near RW transition reasonably captured.

Toward the CEP

Assuming multi-point Padé reliable, turn attention to CEP. Also in 3-d, \mathbb{Z}_2 universality class, so $\beta\delta\approx 1.5$. Exact mapping to Ising not yet known. Linear ansatz:

$$t = \alpha_t \Delta T + \beta_t \Delta \mu_B$$

$$h = \alpha_h \Delta T + \beta_h \Delta \mu_B,$$

where $\Delta T \equiv T - T^{\sf CEP}$ and $\Delta \mu_B \equiv \mu_B - \mu_B^{\sf CEP}$, which leads to 24

$$\mu_{\mathsf{LY}} = \mu_B^{\mathsf{CEP}} + c_1 \Delta T + i c_2 |z_c|^{-\beta \delta} \Delta T^{\beta \delta} + c_3 \Delta T^2 + \mathcal{O}(\Delta T^3).$$

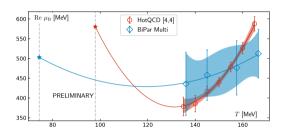
Expectation from lattice²⁵: $\mu_B^{\text{CEP}}/T^{\text{CEP}} \gtrsim 3$.

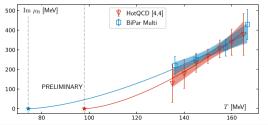
D. A. Clarke

²⁴M. A. Stephanov, Phys. Rev. D, 73.9, 094508 (2006).

²⁵D. Bollweg et al., Phys. Rev. D, 105.7, 074511 (2022).

Toward the CEP: Single-point and multi-point





Some comments:

- Must propagate fit uncertainties
- ightharpoonup Red: smaller $N_s/N_{ au}$
- ightharpoonup Red: $N_{ au}=8$
- ightharpoonup Blue: $N_{ au}=6$
- ▶ Blue: Need lower *T*

Rough suggestion of CEP: $T\sim 85~{\rm MeV}~\mu_B\sim 550~{\rm MeV}$

Toward the CEP: Evaluation of rough estimate

$$T\sim 85~{
m MeV}~\mu_B\sim 550~{
m MeV}$$

- ► $T < T_c \approx 130 \text{ MeV}^{26}$
- $ightharpoonup \mu_B/T \sim 6.5$ is well outside apparent convergence radius

Year	Method	T^{CEP} [MeV]	$\mu_B^{\sf CEP}$ [MeV]	μ_B^{CEP}/T^{CEP}
2023	CP+LQCD ²⁷	≈ 100	≈ 580	≈ 5.8
2023	BHE ²⁸	101-108	560-625	≈ 5.7
2021	DSE ²⁹	117	600	5.13
2021	DSE ³⁰	109	610	5.59
2020	fRG ³¹	107	635	5.54

²⁶H.-T. Ding et al., Phys. Rev. Lett. 123.6, 062002 (2019).

²⁷G. Basar, 2312.06952, (2023).

²⁸M. Hippert et al., 2309.00579, (2023).

²⁹P. J. Gunkel and C. S. Fischer, Phys. Rev. D, 104.5, 054022 (2021).

³⁰F. Gao and J. M. Pawlowski, Phys. Lett. B, 820, 136584 (2021).

³¹W.-j. Fu, J. M. Pawlowski, and F. Rennecke, Phys. Rev. D, 101.5, 054032 (2020).

Summary and Outlook

- Multi-point Padé tested in a variety of situations
- ightharpoonup Possible indication of CEP around $T\sim 85$ MeV, $\mu_B\sim 550$ MeV
- ▶ In progress: Refinement of CEP estimate strategy
- ► In progress: Continuum limit extrapolation
- ► In progress: Examine chiral transition

Thanks for your attention.