Locating the critical point using lattice QCD¹

D. A. Clarke, F. Di Renzo, P. Dimopoulos, J. Goswami, C. Schmidt, S. Singh, K. Zambello

University of Utah

RHIC-BES Seminar, 11 June 2024

¹B.-P. collaboration, arXiv:2405.10196, (May 2024).

The lattice approach

Lattice QCD expectation values given by

$$\begin{split} O \rangle &\sim \int \mathrm{d}\bar{\psi} \,\mathrm{d}\psi \,e^{\bar{\psi}D\psi} & \mathrm{d}U \,e^{-S(U)} \,O(U) \\ &= \int \mathrm{det} \,D & \mathrm{d}U \,e^{-S(U)} \,O(U) \\ &\approx \frac{1}{N_{\mathsf{conf}}} \sum_n O_n \end{split}$$

- Draw configuration U_n according to $dP \sim dU \det D e^{-S}$
- Create time series of measurements O_n of O
- det $D \in \mathbb{R}$ when $\mu = 0$
- If $\mu \neq 0$, it is in general complex (sign problem)

The infamous problem

Trick: μ_B pure imaginary avoids sign problem; can analytically continue to $\mu_B \in \mathbb{R}^{2,3}$.

Trick: Expand pressure P/T^4 in $\mu_B/T^{4,5}$. (Up to $8^{\rm th}$ order.)

The latter is too pricey! Popularity of resummation schemes 6,7,8,9 .

²P. de Forcrand and O. Philipsen, Nuclear Physics B, 642.1-2, 290–306 (2002).
³M. D'Elia and M.-P. Lombardo, Phys. Rev. D, 67.1, 014505 (2003).
⁴C. R. Allton et al., Phys. Rev. D, 66.7, 074507 (2002).
⁵R. V. Gavai and S. Gupta, Phys. Rev. D, 68.3, 034506 (2003).
⁶S. Borsányi et al., Phys. Rev. Lett. 126.23, 232001 (2021).
⁷D. Bollweg et al., Phys. Rev. D, 105.7, 074511 (2022).
⁸S. Mitra, P. Hegde, and C. Schmidt, Phys. Rev. D, 106.3, 034504 (2022).
⁹S. Mondal, S. Mukherjee, and P. Hegde, Phys. Rev. Lett. 128.2, 022001 (2022).

Lee-Yang edges

Taylor where $P \sim T \log \mathcal{Z}_{QCD}$ is analytic.

Lee-Yang theorem¹⁰: Zeroes of the partition function that approach the real axis as $V \rightarrow \infty$ correspond to phase transitions.

Intuition: Indications of non-analyticities in ${\cal P}$

- may hint at phase transitions
- \blacktriangleright or singularities in $\mathbb C$
- constrain validity of Taylor series

Ising: Generically have branch cuts on imaginary axis. (Pinch real axis at T_c .)

Lee-Yang edge (LYE): The singularities closest to real axis.

LYE is the nearest singularity to the origin, position fixed at $^{11}\mbox{,}$

$$z_c = |z_c| e^{\pm i\pi/2\beta\delta}, \quad z \equiv th^{-1/\beta\delta}$$

with $t \sim |T - T_c|$, h magnetization, critical exponents β , δ .

¹⁰C. N. Yang and T. D. Lee, Phys. Rev. 87.3, 404–409 (1952).
 ¹¹M. E. Fisher, Phys. Rev. Lett. 40.25, 1610–1613 (1978).

Extracting singularities

Singularities \Rightarrow rational functions,

$$R_{n}^{m}(x) \equiv \frac{\sum_{i=0}^{m} a_{i}x^{i}}{1 + \sum_{j=1}^{n} b_{j}x^{j}}.$$

Singularities captured/mimicked by poles.

Let f have formal Taylor series

$$f(x) = \sum_{k=0}^{\infty} c_k x^k.$$

Padé approximant of order [m, n]: R_n^m with coefficients to equal the Taylor series up to order m + n.

Say we know Taylor series up to some order s. The Multi-point Padé is the R_n^m satisfying

$$\left. \frac{\mathrm{d}^l R_n^m}{\mathrm{d}x^l} \right|_{x_i} = \left. \frac{\mathrm{d}^l f}{\mathrm{d}x^l} \right|_{x_i}$$

for N points x_i , $0 \le l < s - 1$.

- Can trade lower Taylor order for more x_i .
- Translates to simulations at multiple iµB using low-order cumulants.

Roughly follow this procedure:

- 1. What transition are you interested in? (CEP)
- 2. How should the singularities scale? ($z_c = |z_c| e^{\pm i \pi/2 \beta \delta}$)
- 3. Lattice calculations at multiple, pure imaginary μ_B
- 4. Estimate singularities with multi-point Padé
- 5. Analytically continue results to $\mu_B \in \mathbb{R}$

Set up:

- $\blacktriangleright~N_f=2+1$ sea quarks, physical masses $m_s/m_l=27$
- $\mu_u = \mu_d = \mu_s \equiv \mu$ which gives $\mu_B = 3\mu$ and $\mu_S = 0$
- \blacktriangleright Imaginary μ_B only at one lattice spacing $N_\tau=6$

Lattice observables

Cumulants $\chi_n^B \sim \partial_{\hat{\mu}_B}^n \log \mathcal{Z}_{\text{QCD}}$

- ► $\log Z_{\text{QCD}}$ even in $\hat{\mu}_B = i\theta$ and 2π -periodic
- ▶ Simulate on 10 $\hat{\mu}_B \in [0, i\pi]$
- Other points by periodicity and parity

Constructing rational approximations

- Singularities have some interval dependence
- \blacktriangleright Hence try many intervals per T
- $\blacktriangleright~R_3^3$ simulataneous fit to χ_1^B and χ_2^B
- ▶ Try 55 intervals, collect poles as singularities

CEP in 3-d, \mathbb{Z}_2 universality class, so $\beta \delta \approx 1.5$. Mapping to Ising not yet known. Ansatz:

$$t = \alpha_t \Delta T + \beta_t \Delta \mu_B$$
$$h = \alpha_h \Delta T + \beta_h \Delta \mu_B$$

where $\Delta T \equiv T - T^{CEP}$ and $\Delta \mu_B \equiv \mu_B - \mu_B^{CEP}$; leads to singularity scaling¹²

$$\mu_{\rm LY} = \mu_B^{\rm CEP} + c_1 \Delta T + i c_2 |z_c|^{-\beta \delta} \Delta T^{\beta \delta} + c_3 \Delta T^2 + \mathcal{O}(\Delta T^3).$$

¹²M. A. Stephanov, Phys. Rev. D, 73.9, 094508 (2006).

Toward the CEP: Single-point and multi-point

- Simultaneous fit to real and imaginary
- One $N_{\tau} = 8$ fit to HotQCD
- Representative N_{\u03c0} = 6
 MPP fit
- Yellow: AIC-weighted result (bootstrap MPP over multiple singularity sets)

Toward the CEP: Multi-point histogram

Distribution of $\mu_B^{\rm CEP}$, $T^{\rm CEP}$ from bootstrap:

- Hotter means more results in that pixel
- Bars give 68% confidence, centered at median
- Cross gives arithmetic mean
- Dashed line gives crossover

Toward the CEP: Evaluation

- \blacktriangleright Use Padé and MPP to find singularities in $\log \mathcal{Z}_{\rm QCD}$
- Follow the LYE according to scaling expectation
- Encouraging MPP results for $N_{\tau} = 6$ at $(T^{\text{CEP}}, \mu_B^{\text{CEP}}) = (105^{+8}_{-18}, 422^{+80}_{-35})$ MeV
- ▶ Working on lower *T*
- Working on finer lattices

Thanks for your attention.

¹³P. Dimopoulos et al., Phys. Rev. D, 105.3, 034513 (2022).

Test: 1-d Thirring model^{14,15}

Number density $N(\mu)$ can be worked out exactly.

Multi-point captures the exact $N(\mu)$ well, outperforms single point.

¹⁴P. Dimopoulos et al., Phys. Rev. D, 105.3, 034513 (2022).

¹⁵F. Di Renzo, S. Singh, and K. Zambello, Phys. Rev. D, 103.3, 034513 (2021).

D. A. Clarke

QCD critical point from lattice

Test: 2-d Ising model^{16,17}

Reproduces correct scaling and critical exponents extremely well.

¹⁶A. Deger and C. Flindt, Phys. Rev. Research, 1.2, 023004 (2019).

¹⁷S. Singh, M. Cipressi, and F. Di Renzo, Phys. Rev. D, 109.7, 074505 (2024).

D. A. Clarke

QCD critical point from lattice

Test: The Roberge-Weiss transition¹⁹

 $\mathcal{Z}_{ ext{QCD}}$ at $\hat{\mu}_f = i \hat{\mu}_I$ has \mathbb{Z}_3 periodicity

 $\hat{\mu}_I \rightarrow \hat{\mu}_I + 2\pi n/3$

with $\hat{\mu}\equiv \mu/T.$ First order lines separate phases distinguished by Polyakov loop

$$P \sim \sum_{\vec{x}} \operatorname{tr} \prod_{\tau} U_4(\vec{x}, \tau).$$

Endpoint in 3-d, \mathbb{Z}_2 universality class. Critical exponents¹⁸:

 $\beta = 0.3264, \quad \delta = 4.7898$

¹⁸S. El-Showk et al., J Stat Phys, 157.4-5, 869–914 (2014).
 ¹⁹F. Cuteri et al., Phys. Rev. D, 106.1, 014510 (2022).

Test: The Roberge-Weiss transition^{20,21}

Lattice setup:

- ▶ 2+1 dynamical HISQ quarks
- \blacktriangleright m_s/m_l fixed to physical value
- \blacktriangleright $N_{ au}=4$, 6 with $N_s/N_{ au}=6$

$$\begin{split} h &\sim \hat{\mu}_B - i\pi \qquad t \sim T - T_{\rm RW} \\ z &= t h^{-1/\beta\delta} \qquad z_c = |z_c| e^{\pm i\pi/2\beta\delta} \end{split}$$

$$\Rightarrow \operatorname{Re} \hat{\mu}_{\mathsf{LY}} = \pm \pi \left(\frac{z_0}{|z_c|} \right)^{\beta \delta}$$

Taking $|z_c| = 2.43$ yields $9.1 \leq z_0 \leq 9.4$.

²⁰C. Bonati et al., Phys. Rev. D, 93.7, 074504 (2016).
 ²¹G. Johnson et al., Phys. Rev. D, 107.11, 116013 (2023).

D. A. Clarke

QCD critical point from lattice

Taking $T_{\rm RW}^{N_{\tau}=4} = 201.4$ MeV yields $\beta \delta \approx 1.5635$, compare 1.563495(15).

 $\begin{array}{ll} \mbox{Prelim:} \ T_{\rm RW} = 211.1(3.1) \ \mbox{MeV}, \\ \mbox{compare 208(5) MeV}. \end{array}$

Test: Roberge-Weiss FSS

FSS scaling of $\operatorname{Re} \hat{\mu}_{LY}$ near RW transition reasonably captured.

Generate HISQ using RHMC of SIMULATeQCD

• Set scale with f_K

β	T [MeV]	N_{μ}	$N_{\sf conf}/N_{\mu}$
6.170	166.6	10	1800
6.120	157.5	10	4780
6.038	145.0	10	5300
5.980	136.1	10	6840
5.850	120.0	10	24000

Simulataneous fit

CEP distribution

