Locating the critical point using lattice \mathbf{QCD}^1

D. A. Clarke, F. Di Renzo, P. Dimopoulos, J. Goswami, C. Schmidt, S. Singh, K. Zambello

University of Utah

RHIC-BES Seminar, 11 June 2024

 1 B.-P. collaboration, arXiv:2405.10196, (May 2024).

The lattice approach

Lattice QCD expectation values given by

$$
\langle O \rangle \sim \int d\bar{\psi} d\psi e^{\bar{\psi}D\psi} dU e^{-S(U)} O(U)
$$

= $\int d\mathbf{t} D dU e^{-S(U)} O(U)$
 $\approx \frac{1}{N_{\text{conf}}} \sum_{n} O_n$

- ▶ Draw configuration U_n according to $dP \sim dU$ det De^{-S}
- \blacktriangleright Create time series of measurements O_n of O
- \blacktriangleright det $D \in \mathbb{R}$ when $\mu = 0$
- If $\mu \neq 0$, it is in general complex (sign problem)

The infamous problem

Trick: μ_B pure imaginary avoids sign problem; can analytically continue to $\mu_B \in \mathbb{R}^{2,3}$.

Trick: Expand pressure P/T^4 in $\mu_B/T^{4,5}$. (Up to $8^{\rm th}$ order.)

The latter is too pricey! Popularity of resummation schemes $6,7,8,9$.

P. de Forcrand and O. Philipsen, Nuclear Physics B, 642.1-2, 290–306 (2002). M. D'Elia and M.-P. Lombardo, Phys. Rev. D, 67.1, 014505 (2003). ⁴C. R. Allton et al., Phys. Rev. D, 66.7, 074507 (2002). R. V. Gavai and S. Gupta, Phys. Rev. D, 68.3, 034506 (2003). S. Borsányi et al., Phys. Rev. Lett. 126.23, 232001 (2021). ⁷D. Bollweg et al., Phys. Rev. D, 105.7, 074511 (2022). S. Mitra, P. Hegde, and C. Schmidt, Phys. Rev. D, 106.3, 034504 (2022). S. Mondal, S. Mukherjee, and P. Hegde, Phys. Rev. Lett. 128.2, 022001 (2022).

Lee-Yang edges

Taylor where $P \sim T \log \mathcal{Z}_{\text{QCD}}$ is analytic.

Lee-Yang theorem¹⁰: Zeroes of the partition function that approach the real axis as $V \rightarrow$ ∞ correspond to phase transitions.

Intuition: Indications of non-analyticities in P

- \blacktriangleright may hint at phase transitions
- \triangleright or singularities in $\mathbb C$
- ▶ constrain validity of Taylor series

Ising: Generically have branch cuts on imaginary axis. (Pinch real axis at T_c .)

Lee-Yang edge (LYE): The singularities closest to real axis.

LYE is the nearest singularity to the origin, position fixed at 11 ,

$$
z_c = |z_c|e^{\pm i\pi/2\beta\delta}, \quad z \equiv th^{-1/\beta\delta}
$$

with $t \sim |T - T_c|$, h magnetization, critical exponents β , δ .

 10 C. N. Yang and T. D. Lee, Phys. Rev. 87.3, 404–409 (1952). 11 M. E. Fisher, Phys. Rev. Lett. 40.25, 1610-1613 (1978).

Extracting singularities

Singularities \Rightarrow rational functions,

$$
R_n^m(x) \equiv \frac{\sum_{i=0}^m a_i x^i}{1 + \sum_{j=1}^n b_j x^j}.
$$

Singularities captured/mimicked by poles.

Let f have formal Taylor series

$$
f(x) = \sum_{k=0}^{\infty} c_k x^k.
$$

Padé approximant of order $[m, n]$: R_n^m with coefficients to equal the Taylor series up to order $m + n$.

Say we know Taylor series up to some order s. The Multi-point Padé is the R_n^m satisfying

$$
\left. \frac{\mathrm{d}^l R_n^m}{\mathrm{d} x^l} \right|_{x_i} = \left. \frac{\mathrm{d}^l f}{\mathrm{d} x^l} \right|_{x_i}
$$

for N points x_i , $0 \le l < s-1$.

- \blacktriangleright Can trade lower Taylor order for more x_i .
- \triangleright Translates to simulations at multiple $i\mu_B$ using low-order cumulants.

Roughly follow this procedure:

- 1. What transition are you interested in? (CEP)
- 2. How should the singularities scale? $(z_c=|z_c|e^{\pm i\pi/2\beta\delta})$
- 3. Lattice calculations at multiple, pure imaginary μ_B
- 4. Estimate singularities with multi-point Padé
- 5. Analytically continue results to $\mu_B \in \mathbb{R}$

Set up:

- \triangleright $N_f = 2 + 1$ sea quarks, physical masses $m_s/m_l = 27$
- $\blacktriangleright \mu_u = \mu_d = \mu_s \equiv \mu$ which gives $\mu_B = 3\mu$ and $\mu_S = 0$

 \blacktriangleright Imaginary μ_B only at one lattice spacing $N_\tau = 6$

Lattice observables

Cumulants $\chi_n^B \sim \partial_{\hat{\mu}_B}^n \log \mathcal{Z}_{\rm QCD}$

- ▶ \log Z_{QCD} even in $\hat{\mu}_B = i\theta$ and 2π -periodic
- ▶ Simulate on 10 $\hat{\mu}_B \in [0, i\pi]$
- \triangleright Other points by periodicity and parity

Constructing rational approximations

- ▶ Singularities have some interval dependence
- \blacktriangleright Hence try many intervals per T
- \blacktriangleright R_3^3 simulataneous fit to χ_1^B and χ_2^B
- \triangleright Try 55 intervals, collect poles as singularities

CEP in 3-d, \mathbb{Z}_2 universality class, so $\beta \delta \approx 1.5$. Mapping to Ising not yet known. Ansatz:

$$
t = \alpha_t \Delta T + \beta_t \Delta \mu_B
$$

$$
h = \alpha_h \Delta T + \beta_h \Delta \mu_B,
$$

where $\Delta T \equiv T - T^{\sf CEP}$ and $\Delta \mu_B \equiv \mu_B - \mu_B^{\sf CEP}$; leads to singularity scaling 12

$$
\mu_{\rm LY} = \mu_B^{\rm CEP} + c_1 \Delta T + ic_2 |z_c|^{-\beta \delta} \Delta T^{\beta \delta} + c_3 \Delta T^2 + \mathcal{O}(\Delta T^3).
$$

 12 M. A. Stephanov, Phys. Rev. D, 73.9, 094508 (2006).

Toward the CEP: Single-point and multi-point

- ▶ Simultaneous fit to real and imaginary
- \triangleright One $N_{\tau} = 8$ fit to HotQCD
- Representative $N_\tau=6$ MPP fit
- ▶ Yellow: AIC-weighted result (bootstrap MPP over multiple singularity sets)

Toward the CEP: Multi-point histogram

Distribution of $\mu_B^{\sf CEP}$, $T^{\sf CEP}$ from bootstrap:

- ▶ Hotter means more results in that pixel
- Bars give 68% confidence, centered at median
- \blacktriangleright Cross gives arithmetic mean
- Dashed line gives crossover

Toward the CEP: Evaluation

- \triangleright Use Padé and MPP to find singularities in $\log \mathcal{Z}_{\text{QCD}}$
- \triangleright Follow the LYE according to scaling expectation
- ▶ Encouraging MPP results for $N_{\tau} = 6$ at $(T^{\text{CEP}}, \mu_B^{\text{CEP}}) = (105^{+8}_{-18}, 422^{+80}_{-35})$ MeV
- \blacktriangleright Working on lower T
- ▶ Working on finer lattices

Thanks for your attention.

 13 P. Dimopoulos et al., Phys. Rev. D, 105.3, 034513 (2022).

D. A. Clarke **D. A. Clarke** [QCD critical point from lattice](#page-0-0) 11 Jun 2024 13 / 13 $\sqrt{13}$

Test: $1-d$ Thirring model^{14,15}

Number density $N(\mu)$ can be worked out exactly.

Multi-point captures the exact $N(\mu)$ well, outperforms single point.

 14 P. Dimopoulos et al., Phys. Rev. D, 105.3, 034513 (2022).

 15 F. Di Renzo, S. Singh, and K. Zambello, Phys. Rev. D, 103.3, 034513 (2021).

D. A. Clarke **D. A. Clarke COD** critical point from lattice 11 Jun 2024 13 / 13

Test: $2-d$ Ising model^{16,17}

Reproduces correct scaling and critical exponents extremely well.

 16 A. Deger and C. Flindt, Phys. Rev. Research, 1.2, 023004 (2019).

¹⁷S. Singh, M. Cipressi, and F. Di Renzo, Phys. Rev. D, 109.7, 074505 (2024).

D. A. Clarke **D. A. Clarke COD** critical point from lattice 11 Jun 2024 13 / 13

Test: The Roberge-Weiss transition¹⁹

 \mathcal{Z}_{QCD} at $\hat{\mu}_f = i\hat{\mu}_I$ has \mathbb{Z}_3 periodicity

 $\hat{\mu}_I \rightarrow \hat{\mu}_I + 2\pi n/3$

with $\hat{\mu} \equiv \mu/T$. First order lines separate phases distinguished by Polyakov loop

$$
P \sim \sum_{\vec{x}} \operatorname{tr} \prod_{\tau} U_4(\vec{x}, \tau).
$$

Endpoint in 3-d, \mathbb{Z}_2 universality class. Critical exponents 18 :

 $\beta = 0.3264, \quad \delta = 4.7898$

 18 S. El-Showk et al., J Stat Phys, 157.4-5, 869-914 (2014). ¹⁹F. Cuteri et al., Phys. Rev. D, 106.1, 014510 (2022).

Test: The Roberge-Weiss transition^{20,21}

Lattice setup:

- \blacktriangleright 2+1 dynamical HISQ quarks
- \blacktriangleright m_s/m_l fixed to physical value
- $N_{\tau} = 4$, 6 with $N_s/N_{\tau} = 6$

$$
h \sim \hat{\mu}_B - i\pi \t t \sim T - T_{\rm RW}
$$

$$
z = th^{-1/\beta\delta} \t z_c = |z_c|e^{\pm i\pi/2\beta\delta}
$$

$$
\Rightarrow \operatorname{Re}\hat{\mu}_{\mathsf{LY}} = \pm \pi \left(\frac{z_0}{|z_c|}\right)^{\beta \delta}
$$

Taking $|z_c| = 2.43$ yields $9.1 \le z_0 \le 9.4$.

 20 C. Bonati et al., Phys. Rev. D, 93.7, 074504 (2016). ²¹G. Johnson et al., Phys. Rev. D, 107.11, 116013 (2023).

D. A. Clarke **11 Jun 2024** 13 / 13

Taking $T_{\text{RW}}^{N_\tau=4}=201.4$ MeV yields $\beta\delta \approx 1.5635$, compare 1.563495(15).

Prelim: $T_{\text{RW}} = 211.1(3.1)$ MeV, compare 208(5) MeV.

Test: Roberge-Weiss FSS

FSS scaling of $\text{Re}\,\hat{\mu}_{LY}$ near RW transition reasonably captured.

▶ Generate HISQ using RHMC of SIMULATeQCD

 \blacktriangleright Set scale with f_K

Simulataneous fit

CEP distribution

