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What lattice people do (no fermions)

▶ 4D space-time with Euclidean metric and periodic BCs

▶ Sites x = (an1, an2, an3, an4)

▶ Regularization through lattice spacing a

▶ UV cutoff ∼ 1/a; IR cutoff ∼ 1/aN

aNτ
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aNσ

x
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Gauge fields

▶ µ and ν label directions

▶ Link variables Uµ(x) = e−aAµ(x) ∈ SU(3) on links

▶ Configuration: Snapshot of all 4×N3
σ ×Nτ links

µ

ν

Uµ(x)

Uν(x)

x
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Path integrals

Want expected value of operator O.

▶ QFT expectation values:

⟨O⟩ ∼
∫

DU eiS(U)O(U)

▶ Lattice QCD expectation values:

⟨O⟩ ∼
∫

DU e−S(U)O(U)

▶ Achieved through Wick rotation
t→ iτ

▶ Hence our Metric goes from Minkowski to Euclidean
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MCMC

▶ Markov Chain Monte Carlo basic idea:

Each configuration generated depending on last one only
Accept new configuration with probability min{1, e−∆S}
Create a time series of measurements On of O

▶ The estimator for ⟨O⟩ on the lattice is

Ō =
1

Nconf

Nconf∑
n=1

On
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Continuum limit

▶ Continuum limit: a→ 0

▶ Must also increase the number of sites

▶ Carry out a fit, usually need 3 or more spacings:

O(a) = Ocont. + a2O0
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A little more detail when there’s fermions

⟨O⟩ ∼
∫

dψ̄ dψ e−ψ̄Dψ dU e−S(U)O(U)

=

∫
detD dU e−S(U)O(U)

Complication:

▶ detD ∈ R when µ = 0

▶ But if µ ̸= 0, it is complex...
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The infamous problem

Trick: µB pure imaginary avoids sign problem;
can analytically continue to µB ∈ R1,2.

Trick: Expand pressure P/T 4 in µB/T
3,4.

The latter is getting a bit too pricey. Popularity
of resummation schemes5,6,7,8.
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2M. D’Elia and M.-P. Lombardo, Phys. Rev. D, 67.1, 014505 (2003).
3C. R. Allton et al., Phys. Rev. D, 66.7, 074507 (2002).
4R. V. Gavai and S. Gupta, Phys. Rev. D, 68.3, 034506 (2003).
5S. Borsányi et al., Phys. Rev. Lett. 126.23, 232001 (2021).
6D. Bollweg et al., Phys. Rev. D, 105.7, 074511 (2022).
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8S. Mondal, S. Mukherjee, and P. Hegde, Phys. Rev. Lett. 128.2, 022001 (2022).
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Lee-Yang theorem

Works where logZQCD is free of singularities.

Lee-Yang theorem9: Zeroes of the partition func-
tion that approach the real axis as V → ∞ cor-
respond to phase transitions.

Intuition: Indications of non-analyticities in P

▶ may hint at phase transitions

▶ or singularities in C
▶ constrain validity of Taylor series

I. THEORY OF CONDENSATION. 407

where
~1 p'

b (V)= Z
fV r-i &y)

(12)
y - plane

Com, bining (11) and (3) we have

=coefficient of yN in exp[V g b~y']. (13)
t- j.

Comparison of this equation with Mayer's theory shows
that the bi's defined by (12) are identical with the
reducible cluster integrals defined6 by Mayer. It is
interesting to notice that these reducible cluster
integrals are, according to (12), closely related to the
moments of the roots y; of Eq. (8). It should be em-
phasized that in both (12) and in Mayer's definition the
b~'s are functions of the volume V. It is evident from
Mayer's definition that they approach definite limits
b i( ~ ) as V~ Qe .

In Mayer's theory the cluster integrals b~ are replaced
from the very beginning by their limiting values b&(ae).
He then considers the series

~(y)= Z bi(")y'

Phasel

log t,

(c)

Phase 5
P

log y

loot

, log y

log t~

and its analytical continuation along the positive real
axis. If one calls the first singularity of x(y) along the
positive real axis t~, one shows in Mayer's theory that

(1) for densities p less than

FIG. 2. Analytical behavior at a given temperature of thermo-
dynamic functions for a system that undergoes two phase transi-
tions. The transitions occur at t1 and )2 which are the points at
which the roots of Eq. (8) close in onto the positive real y axis.
The regions R1, R2, and R3 are free of roots. The three phases 1, 2,
and 3 are indicated in (c). The horizontal parts of (d) represent
two-phase-equilibrium regions.

the system exists in a single phase;
(2) for p= pi, the pressure p (at a given temperature)

becomes independent of the density. Consequently, one
identifies the density p& as the density of the gas at
condensation.

An essential difficulty of Mayer's theory is that it
does not admit of the existence of a liquid phase with
finite density, since the isotherm remains horizontal for
all specific volume less than pi '. This is clearly due to
the replacement of the volume dependent b~'s by their
limiting values. The question is therefore often raised'
as to exactly at what point on the isotherm Mayer's
theory breaks down.

In the present theory by retaining the volume de-
pendence of the partition function gr we do not en-
counter these difhculties. To clarify the relationship with
Mayer's theory, we refer back to Fig. 2(a) and draw a
small circle C within E~ with the center at the origin.
The series

Z br(V)y'
l~l

' See for example Eq. (13.5) in J. E. Mayer and Mayer, Statis-
tical j/Iechanics (John Wiley and Sons, Inc. , New York, 1946),
p. 280.' See, for example, reference 3 (K;i,hn and Uhlenbeck), p. 415.

is easily shown' to converge uniformly in the circle C.
By a well-known mathematical theorem on double
limiting processes one concludes that in C

»m Z bi(V)y'=2 bi( )y'
7'-moo 1 1

The left-hand side of this equation is by definition

Lim V—' loggv,

and the right-hand side x(y). Therefore within C the
function x(y) in Mayer's theory is indeed (kT) ' times
the pressure p as defined by (5). By analytical con-
tinuation one concludes that this holds throughout the
region Ei.

In t, ~e interval O~y(t~ it is evident that p& p~ and
Mayer's theory is seen to give a correct description of
the system.

Beyond the point y= ti (i.e., y—t,) it is not possible
in Mayer's theory to analytically continuate x(y). The
p —log y and p —logy diagrams [Figs. 2(b) and 2(c)]
therefore exist in his theory only to the left of the first
singularity. This explains the nonexistence of the liquid
phase in Mayer's theory.

8 All roots y~ have absolute values larger than the radius 0 of
the circle C. By Eq. (12). we have ib~ ~i~(M/V)l '0 ' But 3E/V.
is bounded. Hence the statement.

9C. N. Yang and T. D. Lee, Phys. Rev. 87.3, 404–409 (1952).
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Lee-Yang edges and extended analyticity

Ising: Generically have branch cuts on imaginary
axis. (Pinch real axis at Tc.)

Lee-Yang edge (LYE): The singularities closest
to real axis.

Above Tc, LYE nearest singularity to the origin.

LYE position fixed at

zc = |zc|e±iπ/2βδ

with z ≡ th−1/βδ and critical exponents β, δ.

Im h

Reh
convergence

region
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Padé approximants

Want detailed information about singularities ⇒ rational functions,

Rmn (x) ≡
∑m

i=0 aix
i

1 +
∑n

j=1 bjx
j
.

Singularities captured or mimicked by zeros in denominator.

Let f have a formal Taylor series

f(x) =

∞∑
k=0

ckx
k.

Padé approximant of order [m,n]: Rmn with coefficients so that it equals the Taylor series up
to order m+ n. Gives relationship between coefficients ai, bj , ck.

D. A. Clarke QCD critical point from LYE 3 Apr 2024 11 / 25



Padé approximants

Things to think about with Padé:

▶ Theorem: Unique when it exists

▶ Theorem: [m,n] converges to f exactly as m→ ∞ when f has pole of order n

▶ Other properties deduced from numerical experiments

▶ Limited by number of known Taylor coefficients

▶ Only have up to 8th order10,11 for logZQCD; difficultly far greater for higher orders12

10S. Borsanyi et al., J. High Energ. Phys. 2018.10, 205 (2018).
11D. Bollweg et al., Phys. Rev. D, 108.1, 014510 (2023).
12Computational requirements of HotQCD EoS exceed 2000 GPU-years and 2.4 PB.
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Multi-point Padé approximants

Padé approximants you get by demanding13

Rmn (x) = fm+n(x) ≡
m+n∑
i=0

ckx
k.

Say we know Taylor series up to some order s. The Multi-point Padé is the Rmn satisfying

dlRmn
dxl

∣∣∣∣∣
xi

=
dlf

dxl

∣∣∣∣∣
xi

for N points xi, 0 ≤ l < s− 1. Some pros/cons:

▶ Need fewer Taylor coefficients!

▶ Less seems to be known about them...

13One expects corresponding relationships among derivatives of R and f .
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Extracting a LYE14

14P. Dimopoulos et al., Phys. Rev. D, 105.3, 034513 (2022).
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The strategy

Roughly follow this procedure:

1. What transition are you interested in?

2. How should the singularities scale?

3. Lattice calculations at multiple, pure imaginary µB.

4. Estimate singularities with multi-point Padé.

5. Does scaling match expectation?

6. Analytically continue results to µB ∈ R.

Next: Why we trust it.
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Test: 1-d Thirring model15,16

Number density N(µ) can be worked out exactly.

[15/15]Single Pade about 0

[10/10]Multi pt Padé ,μ∈[0,4]

Exact function

0 1 2 3 4
-0.5

0.0

0.5

1.0

1.5

2.0

Re[μ]

N(μ)

Multi-point captures the exact N(µ) well, outperforms single point.

15P. Dimopoulos et al., Phys. Rev. D, 105.3, 034513 (2022).
16F. Di Renzo, S. Singh, and K. Zambello, Phys. Rev. D, 103.3, 034513 (2021).
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Test: 2-d Ising model17,18

0 2 4 6 8 10 12 14 16 18

L1/8-2 10 -3

0

0.01
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0.04

0.05

0.06

Im
(h

0)

1.880(16)

Reproduces correct FSS scaling for hLY at Tc.

17A. Deger and C. Flindt, Phys. Rev. Research, 1.2, 023004 (2019).
18F. Di Renzo and S. Singh, PoS(LATTICE2022)148, (2023).
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Test: The Roberge-Weiss transition20

ZQCD at µ̂f = iµ̂I has Z3 periodicity

µ̂I → µ̂I + 2πn/3

with µ̂ ≡ µ/T . First order lines separate phases
distinguished by Polyakov loop

P ∼
∑
x⃗

tr
∏
τ

U4(x⃗, τ).

Endpoint in 3-d, Z2 universality class. Critical
exponents19:

β = 0.3264, δ = 4.7898
19S. El-Showk et al., J Stat Phys, 157.4-5, 869–914 (2014).
20F. Cuteri et al., Phys. Rev. D, 106.1, 014510 (2022).
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Test: The Roberge-Weiss transition21,22

Lattice setup:

▶ 2+1 dynamical HISQ quarks

▶ ms/ml fixed to physical value

▶ Nτ = 4, 6 with Ns/Nτ = 6

h ∼ µ̂B − iπ t ∼ T − TRW

z = th−1/βδ zc = |zc|e±iπ/2βδ

⇒ Re µ̂LY = ±π
(
z0
|zc|

)βδ
Taking |zc| = 2.43 yields 9.1 ≲ z0 ≲ 9.4.

0.00 0.05 0.10 0.15 0.20
(TRW T)/TRW

0.0

0.5

1.0

1.5

2.0

2.5

Re
[

B/T
]

µ̂RLY : Method I

µ̂RLY : Method II

µ̂RLY : Method III

Fit I

Fit II

Fit III

Taking TNτ=4
RW = 201.4 MeV yields

βδ ≈ 1.5635, compare 1.563495(15).

Prelim: TRW = 211.1(3.1) MeV,
compare 208(5) MeV.

21C. Bonati et al., Phys. Rev. D, 93.7, 074504 (2016).
22G. Johnson et al., Phys. Rev. D, 107.11, 116013 (2023).
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Test: Roberge-Weiss FSS23

FSS scaling of Re µ̂LY near RW transition reasonably captured.
23F. Di Renzo et al., PoS(LATTICE2023)169, (2024).
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Toward the CEP

Assuming multi-point Padé reliable, turn attention to CEP. Also in 3-d, Z2 universality class, so
βδ ≈ 1.5. Exact mapping to Ising not yet known. Linear ansatz:

t = αt∆T + βt∆µB

h = αh∆T + βh∆µB,

where ∆T ≡ T − TCEP and ∆µB ≡ µB − µCEPB , which leads to24

µLY = µCEPB + c1∆T + ic2|zc|−βδ∆T βδ + c3∆T
2 +O

(
∆T 3

)
.

Expectation from lattice25: µCEPB /TCEP ≳ 3.

24M. A. Stephanov, Phys. Rev. D, 73.9, 094508 (2006).
25D. Bollweg et al., Phys. Rev. D, 105.7, 074511 (2022).
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Toward the CEP: Single-point and multi-point

200

400
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800 Re µLYE [MeV] HotQCD [4,4]
BiPar Multi

80 90 100 110 120 130 140 150 160 170
0
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Im µLYE [MeV] HotQCD [4,4]
BiPar Multi

Some comments:

▶ Green: smaller box size

▶ Green: Finer lattice

▶ Green: Higher statistics

▶ Yellow box:

TCEP = 105+8
−18 MeV

µCEPB = 423+80
−35 MeV
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Toward the CEP: Distribution (yellow box)
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Toward the CEP: Comparison

TCEP = 105+8
−18 MeV µCEPB = 423+80

−35 MeV

▶ T < Tc ≈ 130 MeV26

▶ µCEPB /TCEP ∼ 4 is outside apparent convergence radius

Year Method TCEP [MeV] µCEPB [MeV] µCEPB /TCEP

2023 CP+LQCD27 ≈ 100 ≈ 580 ≈ 5.8
2023 BHE28 101-108 560-625 ≈ 5.7
2021 DSE29 117 600 5.13
2021 DSE30 109 610 5.59
2020 fRG31 107 635 5.54

26H.-T. Ding et al., Phys. Rev. Lett. 123.6, 062002 (2019).
27G. Basar, 2312.06952, (2023).
28M. Hippert et al., 2309.00579, (2023).
29P. J. Gunkel and C. S. Fischer, Phys. Rev. D, 104.5, 054022 (2021).
30F. Gao and J. M. Pawlowski, Phys. Lett. B, 820, 136584 (2021).
31W.-j. Fu, J. M. Pawlowski, and F. Rennecke, Phys. Rev. D, 101.5, 054032 (2020).
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Summary and Outlook

▶ Multi-point Padé tested in a variety of situations

▶ Indication of CEP around TCEP = 105+8
−18 MeV, µCEPB = 423+80

−35 MeV

▶ In progress: Computations on finer lattices

▶ In progress: Examine chiral transition

Thanks for your attention.
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β T [MeV] Nconf

6.170 166.6 1800
6.120 157.5 4780
6.038 145.0 5300
5.980 136.1 6840
5.850 120.0 24000

Table: Statistics for each ensemble used in this study. The last column gives approximate number of
thermalized configurations per µ value. Quark masses are fixed to their physical value and µs = µl.
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