Searching for the QCD critical point using Lee-Yang edge singularities

D. A. Clarke, F. Di Renzo, P. Dimopoulos, J. Goswami, C. Schmidt, S. Singh, K. Zambello

University of Utah

UIC Seminar, 3 Apr 2024

What lattice people do (no fermions)

- 4D space-time with Euclidean metric and periodic BCs
- Sites $x = (an_1, an_2, an_3, an_4)$
- Regularization through lattice spacing a
- UV cutoff $\sim 1/a$; IR cutoff $\sim 1/aN$

Gauge fields

- \blacktriangleright μ and ν label directions
- Link variables $U_{\mu}(x) = e^{-aA_{\mu}(x)} \in SU(3)$ on links
- Configuration: Snapshot of all $4 \times N_{\sigma}^3 \times N_{\tau}$ links

Path integrals

Want expected value of operator O.

▶ QFT expectation values:

$$\langle O \rangle \sim \int \mathcal{D}U \, e^{iS(U)} \, O(U)$$

Lattice QCD expectation values:

$$\langle O \rangle \sim \int \mathcal{D}U \, e^{-S(U)} \, O(U)$$

Achieved through Wick rotation

$$t \to i \tau$$

Hence our Metric goes from Minkowski to Euclidean

Markov Chain Monte Carlo basic idea:

- Each configuration generated depending on last one only
- Accept new configuration with probability min $\{1, e^{-\Delta S}\}$
- Create a time series of measurements O_n of O

• The estimator for $\langle O \rangle$ on the lattice is

$$\bar{O} = \frac{1}{N_{\rm conf}} \sum_{n=1}^{N_{\rm conf}} O_n$$

Continuum limit

- Continuum limit: $a \rightarrow 0$
- Must also increase the number of sites
- Carry out a fit, usually need 3 or more spacings:

$$O(a) = O^{\text{cont.}} + a^2 O_0$$

$$\begin{split} \langle O \rangle &\sim \int \mathrm{d} \bar{\psi} \, \mathrm{d} \psi \, e^{-\bar{\psi} D \psi} \quad \mathrm{d} U \, e^{-S(U)} \, O(U) \\ &= \int \mathrm{d} \mathrm{e} t \, D \qquad \qquad \mathrm{d} U \, e^{-S(U)} \, O(U) \end{split}$$

Complication:

- det $D \in \mathbb{R}$ when $\mu = 0$
- But if $\mu \neq 0$, it is complex...

The infamous problem

Trick: μ_B pure imaginary avoids sign problem; can analytically continue to $\mu_B \in \mathbb{R}^{1,2}$.

Trick: Expand pressure P/T^4 in $\mu_B/T^{3,4}$.

The latter is getting a bit too pricey. Popularity of resummation schemes 5,6,7,8 .

¹P. de Forcrand and O. Philipsen, Nuclear Physics B, 642.1-2, 290–306 (2002).
²M. D'Elia and M.-P. Lombardo, Phys. Rev. D, 67.1, 014505 (2003).
³C. R. Allton et al., Phys. Rev. D, 66.7, 074507 (2002).
⁴R. V. Gavai and S. Gupta, Phys. Rev. D, 68.3, 034506 (2003).
⁵S. Borsányi et al., Phys. Rev. Lett. 126.23, 232001 (2021).
⁶D. Bollweg et al., Phys. Rev. D, 105.7, 074511 (2022).
⁷S. Mitra, P. Hegde, and C. Schmidt, Phys. Rev. D, 106.3, 034504 (2022).
⁸S. Mondal, S. Mukherjee, and P. Hegde, Phys. Rev. Lett. 128.2, 022001 (2022).

Lee-Yang theorem

Works where $\log \mathcal{Z}_{\rm QCD}$ is free of singularities.

Lee-Yang theorem⁹: Zeroes of the partition function that approach the real axis as $V \to \infty$ correspond to phase transitions.

Intuition: Indications of non-analyticities in P

- may hint at phase transitions
- \blacktriangleright or singularities in $\mathbb C$
- constrain validity of Taylor series

⁹C. N. Yang and T. D. Lee, Phys. Rev. 87.3, 404–409 (1952).

Ising: Generically have branch cuts on imaginary axis. (Pinch real axis at T_{c} .)

Lee-Yang edge (LYE): The singularities closest to real axis.

Above T_c , LYE nearest singularity to the origin.

LYE position fixed at

$$z_c = |z_c| e^{\pm i\pi/2\beta\delta}$$

with $z \equiv th^{-1/\beta\delta}$ and critical exponents β , δ .

Want detailed information about singularities \Rightarrow rational functions,

$$R_n^m(x) \equiv \frac{\sum_{i=0}^m a_i x^i}{1 + \sum_{j=1}^n b_j x^j}.$$

Singularities captured or mimicked by zeros in denominator.

Let f have a formal Taylor series

$$f(x) = \sum_{k=0}^{\infty} c_k x^k.$$

Padé approximant of order [m, n]: R_n^m with coefficients so that it equals the Taylor series up to order m + n. Gives relationship between coefficients a_i , b_j , c_k .

Things to think about with Padé:

- ► Theorem: Unique when it exists
- \blacktriangleright Theorem: [m,n] converges to f exactly as $m \to \infty$ when f has pole of order n
- Other properties deduced from numerical experiments
- Limited by number of known Taylor coefficients
- ▶ Only have up to 8^{th} order^{10,11} for $\log Z_{\text{QCD}}$; difficultly far greater for higher orders¹²

¹⁰S. Borsanyi et al., J. High Energ. Phys. 2018.10, 205 (2018).

¹¹D. Bollweg et al., Phys. Rev. D, 108.1, 014510 (2023).

¹²Computational requirements of HotQCD EoS exceed 2000 GPU-years and 2.4 PB.

Multi-point Padé approximants

Padé approximants you get by demanding¹³

$$R_n^m(x) = f^{m+n}(x) \equiv \sum_{i=0}^{m+n} c_k x^k.$$

Say we know Taylor series up to some order s. The Multi-point Padé is the R_n^m satisfying

$$\left. \frac{\mathrm{d}^l R_n^m}{\mathrm{d}x^l} \right|_{x_i} = \left. \frac{\mathrm{d}^l f}{\mathrm{d}x^l} \right|_{x_i}$$

for N points x_i , $0 \le l < s - 1$. Some pros/cons:

- Need fewer Taylor coefficients!
- Less seems to be known about them...

¹³One expects corresponding relationships among derivatives of R and f.

¹⁴P. Dimopoulos et al., Phys. Rev. D, 105.3, 034513 (2022).

D. A. Clarke

QCD critical point from LYE

Roughly follow this procedure:

- 1. What transition are you interested in?
- 2. How should the singularities scale?
- 3. Lattice calculations at multiple, pure imaginary μ_B .
- 4. Estimate singularities with multi-point Padé.
- 5. Does scaling match expectation?
- 6. Analytically continue results to $\mu_B \in \mathbb{R}$.

Next: Why we trust it.

Test: 1-d Thirring model^{15,16}

Number density $N(\mu)$ can be worked out exactly.

Multi-point captures the exact $N(\mu)$ well, outperforms single point.

¹⁵P. Dimopoulos et al., Phys. Rev. D, 105.3, 034513 (2022).

¹⁶F. Di Renzo, S. Singh, and K. Zambello, Phys. Rev. D, 103.3, 034513 (2021).

D. A. Clarke

QCD critical point from LYE

Test: 2-d Ising model^{17,18}

Reproduces correct FSS scaling for h^{LY} at T_c .

¹⁷A. Deger and C. Flindt, Phys. Rev. Research, 1.2, 023004 (2019). ¹⁸F. Di Renzo and S. Singh, PoS(LATTICE2022)148, (2023).

D. A. Clarke

QCD critical point from LYE

Test: The Roberge-Weiss transition²⁰

 $\mathcal{Z}_{ ext{QCD}}$ at $\hat{\mu}_f = i \hat{\mu}_I$ has \mathbb{Z}_3 periodicity

 $\hat{\mu}_I \rightarrow \hat{\mu}_I + 2\pi n/3$

with $\hat{\mu}\equiv \mu/T.$ First order lines separate phases distinguished by Polyakov loop

$$P \sim \sum_{\vec{x}} \operatorname{tr} \prod_{\tau} U_4(\vec{x}, \tau).$$

Endpoint in 3-d, \mathbb{Z}_2 universality class. Critical exponents¹⁹:

 $\beta = 0.3264, \quad \delta = 4.7898$

¹⁹S. El-Showk et al., J Stat Phys, 157.4-5, 869–914 (2014).
²⁰F. Cuteri et al., Phys. Rev. D, 106.1, 014510 (2022).

Test: The Roberge-Weiss transition^{21,22}

Lattice setup:

- ► 2+1 dynamical HISQ quarks
- \blacktriangleright m_s/m_l fixed to physical value
- $N_{ au}=4$, 6 with $N_s/N_{ au}=6$

$$\begin{split} h &\sim \hat{\mu}_B - i\pi \qquad t \sim T - T_{\rm RW} \\ z &= t h^{-1/\beta\delta} \qquad z_c = |z_c| e^{\pm i\pi/2\beta\delta} \end{split}$$

$$\Rightarrow \operatorname{Re} \hat{\mu}_{\mathsf{LY}} = \pm \pi \left(\frac{z_0}{|z_c|} \right)^{\beta \delta}$$

Taking $|z_c| = 2.43$ yields $9.1 \leq z_0 \leq 9.4$.

²¹C. Bonati et al., Phys. Rev. D, 93.7, 074504 (2016).
²²G. Johnson et al., Phys. Rev. D, 107.11, 116013 (2023).

D. A. Clarke

QCD critical point from LYE

Taking $T_{\rm RW}^{N_{\tau}=4} = 201.4$ MeV yields $\beta \delta \approx 1.5635$, compare 1.563495(15).

 $\begin{array}{ll} \mbox{Prelim:} \ T_{\rm RW} = 211.1(3.1) \ {\rm MeV}, \\ \mbox{compare 208(5) } \ {\rm MeV}. \end{array}$

Test: Roberge-Weiss FSS²³

FSS scaling of $\operatorname{Re} \hat{\mu}_{LY}$ near RW transition reasonably captured.

²³F. Di Renzo et al., PoS(LATTICE2023)169, (2024).

D. A. Clarke

QCD critical point from LYE

Assuming multi-point Padé reliable, turn attention to CEP. Also in 3-d, \mathbb{Z}_2 universality class, so $\beta \delta \approx 1.5$. Exact mapping to Ising not yet known. Linear ansatz:

 $t = \alpha_t \Delta T + \beta_t \Delta \mu_B$ $h = \alpha_h \Delta T + \beta_h \Delta \mu_B,$

where $\Delta T\equiv T-T^{\sf CEP}$ and $\Delta\mu_B\equiv\mu_B-\mu_B^{\sf CEP},$ which leads to 24

 $\mu_{\rm LY} = \mu_B^{\rm CEP} + c_1 \Delta T + ic_2 |z_c|^{-\beta\delta} \Delta T^{\beta\delta} + c_3 \Delta T^2 + \mathcal{O}(\Delta T^3).$

Expectation from lattice²⁵: $\mu_B^{\text{CEP}}/T^{\text{CEP}} \gtrsim 3$.

²⁴M. A. Stephanov, Phys. Rev. D, 73.9, 094508 (2006).

²⁵D. Bollweg et al., Phys. Rev. D, 105.7, 074511 (2022).

Toward the CEP: Single-point and multi-point

Some comments:

- Green: smaller box size
- Green: Finer lattice
- ► Green: Higher statistics

Yellow box:

 $T^{\mathsf{CEP}} = 105^{+8}_{-18} \text{ MeV}$ $\mu_B^{\mathsf{CEP}} = 423^{+80}_{-35} \text{ MeV}$

Toward the CEP: Distribution (yellow box)

QCD critical point from LYE

Toward the CEP: Comparison

$$T^{\mathsf{CEP}} = 105^{+8}_{-18} \,\, \mathrm{MeV} ~~ \mu_B^{\mathsf{CEP}} = 423^{+80}_{-35} \,\, \mathrm{MeV}$$

 \blacktriangleright $T < T_c \approx 130 \text{ MeV}^{26}$

▶ $\mu_B^{\text{CEP}}/T^{\text{CEP}} \sim 4$ is outside apparent convergence radius

Year	Method	T^{CEP} [MeV]	μ_B^{CEP} [MeV]	μ_B^{CEP}/T^{CEP}
2023	CP+LQCD ²⁷	≈ 100	≈ 580	≈ 5.8
2023	BHE ²⁸	101-108	560-625	pprox 5.7
2021	DSE ²⁹	117	600	5.13
2021	DSE ³⁰	109	610	5.59
2020	fRG ³¹	107	635	5.54

²⁶H.-T. Ding et al., Phys. Rev. Lett. 123.6, 062002 (2019).

²⁷G. Basar, 2312.06952, (2023).

²⁸M. Hippert et al., 2309.00579, (2023).

- ²⁹P. J. Gunkel and C. S. Fischer, Phys. Rev. D, 104.5, 054022 (2021).
- ³⁰F. Gao and J. M. Pawlowski, Phys. Lett. B, 820, 136584 (2021).
- ³¹W.-j. Fu, J. M. Pawlowski, and F. Rennecke, Phys. Rev. D, 101.5, 054032 (2020).

- Multi-point Padé tested in a variety of situations
- ▶ Indication of CEP around $T^{CEP} = 105^{+8}_{-18}$ MeV, $\mu_B^{CEP} = 423^{+80}_{-35}$ MeV
- In progress: Computations on finer lattices
- ▶ In progress: Examine chiral transition

Thanks for your attention.

β	T [MeV]	N_{conf}
6.170	166.6	1800
6.120	157.5	4780
6.038	145.0	5300
5.980	136.1	6840
5.850	120.0	24000

Table: Statistics for each ensemble used in this study. The last column gives approximate number of thermalized configurations per μ value. Quark masses are fixed to their physical value and $\mu_s = \mu_l$.

