

Topological Charge and Cooling Scales in Pure SU(2) Lattice Gauge Theory

David A. Clarke

Florida State University

APS April Meeting, April 17, 2018

B. A. Berg and D. A. Clarke, Phys. Rev. D 97 054506 (2018)

David A. Clarke (FSU)

SU(2) Topological Charge

Background

- Lattice: investigate physical observables non-perturbatively
- Investigation of SM, NP, hadron properties, confinement, etc. require precise calculations of physical observables
- In continuum limit, one predicts dimensionless mass ratios m/m_0
- Choosing the reference m_0 is called scale setting
- ► Scale setting is a source of systematic uncertainty ⇒ it is useful to investigate scales that can achieve small statistical error bars

Context of project

- Lüscher introduces the gradient flow¹, suggests gradient scale as a new reference scale; scale setting gains renewed interest
- Bonati and D'Elia² suggest standard cooling³ can be used similarly for scale setting; advantage in computational efficiency
- We verify⁴ this works in pure SU(2)
- This project:
 - 1. Investigate whether there is any dependence of the cooling scales on topological charge
 - 2. Obtain a new estimate for topological susceptibility

- ³B. A. Berg, Phys. Lett. B, 104, 475 (1981).
- ⁴B. A. Berg and D. A. Clarke, Phys. Rev. D, 95 (2017).

David A. Clarke (FSU)

¹M. Lüscher, J. High Energy Phys. 2010 (2010).

²C. Bonati and M. D'Elia, Phys. Rev. D, 89 (2014).

Pocket dictionary for pure SU(2) LGT

- ▶ 4D space-time with Euclidean metric and periodic BCs
- ► Hypercube of volume (*aN*)⁴
- Sites $x = (an_1, an_2, an_3, an_4)$ with n_4 in time direction
- Regularization through lattice spacing a
- ▶ $\beta = 4/g^2 \rightarrow \infty$ controls continuum limit $a/m_0 \rightarrow 0$
- ▶ Link variables $U_{\mu}(x) = e^{-aA_{\mu}(x)} \in SU(2)$ on links
- Plaquette $U^{\Box}_{\mu\nu}(x)$
- ► Wilson action:

$$egin{aligned} S &= eta \sum\limits_{x,\mu <
u} \left(1 - rac{1}{2} \operatorname{tr} U^{\Box}_{\mu
u}(x)
ight) \ &pprox - rac{eta}{8} \sum\limits_{x} a^4 \operatorname{tr} F_{\mu
u}(x) F_{\mu
u}(x) \end{aligned}$$

μ

Topological charge on the lattice

Discretize

$$Q=rac{1}{32\pi^2}\int d^4x\,\epsilon_{\mu
u
ho\sigma}\,{
m tr}\,F_{\mu
u}F_{
ho\sigma}$$

as

$$Q=rac{1}{2^9\pi^2}\,a^4\sum_{x}\sum_{\mu
u
ho\sigma=\pm1}^{\pm4}\epsilon_{\mu
u
ho\sigma}\,{
m tr}\,U^{\Box}_{\mu
u}(x)U^{\Box}_{
ho\sigma}(x).$$

Topological susceptibility:

$$\chi = rac{1}{V} \left\langle Q^2
ight
angle$$

- Provides information about distribution of Q
- Phenomenological interest $(\eta \eta' \text{ mass difference})$
- Must smooth out local fluctuations before measuring

Cooling

We "smooth" using standard cooling (locally minimize action)

$$V_{\mu}(x, n_c) = rac{V_{\mu}^{\sqcup}(x, n_c - 1)}{\sqrt{\det V_{\mu}^{\sqcup}(x, n_c - 1)}}, \quad V_{\mu}(x, 0) = U_{\mu}(x).$$

- Suppresses local fluctuations
- Extract Q and χ from cooled configurations, after these quantities become "metastable" (for large enough β)

Given target y and operator E, a cooling scale $L = \sqrt{n_c}$ is defined by

$$y=n_c^2\left\langle E_{n_c}\right\rangle.$$

As reference, take the cooling scale L_{10}^5 .

⁵B. A. Berg and D. A. Clarke, Phys. Rev. D, 95 (2017).

David A. Clarke (FSU)

Metastability of cooling trajectories

David A. Clarke (FSU)

SU(2) Topological Charge

17 April 2018 7 / 11

Stabilization of χ

 χ and ${\it Q}$ metastable for $eta\gtrsim$ 2.751

David A. Clarke (FSU)

SU(2) Topological Charge

Prediction for topological susceptibility

$$\chi^{1/4}/\sqrt{\sigma} = 0.4446(82)$$
 for $n_c = 1000$
 $\chi^{1/4}/\sqrt{\sigma} = 0.4655(87)$ for $n_c = 100$

$\chi^{1/4}/\sqrt{\sigma}$	q_{1000}	q_{100}
$0.501(45)^{6}$	0.31	0.44
$0.528(21)^7$	0.00	0.01
0.480(23) ⁸	0.32	0.56
0.4831(56) ⁹	0.01	0.09
$0.4745(63)^9$	0.07	0.40
$0.4742(56)^9$	0.06	0.40

⁶P. De Forcrand, M. G. Perez, and I.-O. Stamatescu, Nucl. Phys. B, 499, 409 (1997).

⁷T. DeGrand, A. Hasenfratz, and T. G. Kovacs, Nuclear Physics B, 505, 417 (1997).

- ⁸B. Allés, M. D'Elia, and A. Di Giacomo, Phys. Lett. B, 412, 119 (1997).
- ⁹B. Lucini and M. Teper, J. of High Energy Phys. 2001, 050 (2001).

David A. Clarke (FSU)

SU(2) Topological Charge

Dependence of cooling scale on Q

- Compare $L(Q_1)$ with $L(Q_2)$ using Student difference test
- Found L(Q) statistically compatible with L(-Q)
- Found scales with |Q| > 1 to be statistically compatible
- Therefore combine into bins Q = 0, |Q| = 1, and $|Q| \ge 2$

Conclusions

- ▶ For large enough β and N, standard cooling can be used to obtain metastable topological sectors
- Best estimate for topological susceptibility:

$$\chi^{1/4}/\sqrt{\sigma} = 0.4446(82),$$

which is surprisingly close to past results

 Within our statistics, we find no evidence of correlations between cooling scales due to topological charges

Thanks for listening

Backup: Energy operators

$$\left\langle U^{\Box} \right\rangle = a_0 \mathbf{1} + i \sum_{j=1}^3 a_j \sigma_j$$

•
$$E_0 \equiv 2 [1 - a_0]$$

• $E_1 \equiv \sum_{j=1}^3 a_j^2$
• $E_4 \equiv \frac{1}{4} \sum_{j=1}^3 (a_j^{(1)} + a_j^{(2)} + a_j^{(3)} + a_j^{(4)})^2$

Backup: Disaster strikes!

Backup: Finite size extrapolation

David A. Clarke (FSU)

Backup: Continuum limit extrapolation

