Polyakov Loop Susceptibility and Correlators in the Chiral Limit

D. A. Clarke, O. Kaczmarek, F. Karsch, A. Lahiri

Universität Bielefeld

Lattice 2019, 17 June 2019

D. A. Clarke (U. Bielefeld)

The untraced Polyakov loop

$$L_{ec x} = \prod_{ au} U_4(ec x, au)$$

is related to the color-averaged free energy of a quark-antiquark pair¹

$$F_{q\bar{q}}(r,T) = -T \log \left\langle rac{1}{9} \operatorname{tr} L_{\vec{x}} \operatorname{tr} L_{\vec{y}}^{\dagger}
ight
angle \qquad r = |\vec{x} - \vec{y}|.$$

Of interest to us will be color-singlet free energy²

$$F_1(r,T) = -T \log \left\langle rac{1}{3} \operatorname{tr} L_{ec{x}} L_{ec{y}}^\dagger
ight
angle,$$

which is not a gauge invariant quantity.

¹L. D. McLerran and B. Svetitsky, Phys. Rev. D, 24.2, 450-460 (1981).

²S. Nadkarni, Phys. Rev. D, 34.12, 3904–3911 (1986).

D. A. Clarke (U. Bielefeld)

Debye mass m_D

- $r_D = 1/m_D$ characterizes distance at which in-medium modifications of quark-antiquark interaction dominate (color screening).
- Can extract m_D from large r behavior of F_1 :

$$F_1(r,T) \sim \frac{\alpha(T)}{r} e^{-r m_D(T)} + C$$

• m_D dependence on T and N_f can be seen, e.g. in lattice simulations³.

QUESTION: How does m_D depend on m_ℓ ?

³O. Kaczmarek, PoS(CPOD07), 043 (2008).

Deconfinement criteria

The Polyakov loop,

$$P = \frac{1}{N_s^3} \sum_{\vec{x}} \frac{1}{N_c} \operatorname{tr} L_{\vec{x}},$$

 m_D , and deconfinement are all related.

• For quenched QCD

$$\chi = N_s^3 \left(\left\langle |P|^2 \right\rangle - \left\langle |P| \right\rangle^2 \right)$$

peaks near T_c , where \mathbb{Z}_3 is spontaneously broken.

- Corresponds to an inflection point in *P*.
- Finite quark mass breaks \mathbb{Z}_3 explicitly.
- Nevertheless at large quark mass some remnant seemed to remain.
- Tempting to associate χ peak with hadron melting in dynamical QCD.

Deconfinement criteria

• Past studies have shown order parameter inflection points to appear at similar temperatures⁴ however...

⁴M. Cheng et al., Phys. Rev. D, 77.1, 014511 (2008).

Deconfinement criteria

 ...the heights of susceptibility maxima have been known for some time to depend strongly on the quark mass⁵.

QUESTION: Does it make sense to associate Polyakov susceptibility with hadron melting, especially as $m_\ell \rightarrow 0$?

⁵F. Karsch, Lectures on Quark Matter, 583, 209–249 (2002).

D. A. Clarke (U. Bielefeld)

Polyakov Loop Susceptibility and Correlators

Set up and statistics

- $N_f = 2 + 1$ with HISQ action
- $N_{ au}=$ 8 and 12
- $N_s/N_{ au} \geq 3$
- m_s fixed to its physical value
- m_s/m_ℓ varies from 27 to 160
- T in the vicinity of chiral transition temperature
- Set scale with r_1^6
- F_{qq} and F_1 measurements in Coulomb gauge
- Renormalize by matching F₁ to zero temperature potential⁷
- Roughly 3000 to 20000 depending on the parameters
- ⁶C. Bernard, PoS(Lattice 2010), 074 (2011).

⁷O Kaczmarek et al., Phys. Lett. B, 543.1-2, 41–47 (2002).

Preliminary results: Free energies

Preliminary results: Free energies

 $T \approx 166 \text{ MeV}$ CONCLUSION: No dependence of m_D on m_ℓ noticeable. FUTURE: Precise determination of m_D . (Gradient flow?)

D. A. Clarke (U. Bielefeld) Polyakov

Polyakov Loop Susceptibility and Correlators

17 June 2019 9 / 14

Preliminary results: Polyakov loop

Preliminary results: Polyakov loop

D. A. Clarke (U. Bielefeld)

Polyakov Loop Susceptibility and Correlators

Preliminary results: Polyakov susceptibility

Preliminary results: Polyakov susceptibility

 $N_{\tau} = 8$

Summary and outlook

• Does m_D change with m_ℓ ?

- Preliminary results suggest no dependence within our statistics.
- Working toward numerical determination of m_D .
- May use gradient flow to smooth UV fluctuations.
- χ as a probe for hadron melting?
 - Does not coincide with T_{pc} from chiral susceptibility.
 - Results at other parameter combinations still forthcoming...
 - ...in particular points at $m_s/m_l = 27$ and 20.

Thank you!

$N_s^3 imes N_{ au}$	m_s/m_ℓ	approx. N _{conf} /run
$24^3 \times 8$	40	20 000
$32^3 \times 8$	27	6 000
	80	10 000
$40^3 imes 8$	40	10 000
	80	6 000
$42^3 imes 12$	40	10 000
$48^{3} \times 12$	80	6 000
$56^3 imes 8$	160	3 000
	80	3 000
$60^3 imes 12$	40	6 000
	80	3 000

Additional details: N_s dependence of F_{qq}

 N_{τ} =8, β =6.445, m_s/m_l =80

Additional details: a dependence of F_{qq}

Additional details: θ_{gf} dependence of F_1

Additional details: P inflection points

⁸A. Bazavov et al., Phys. Rev. D, 85.5 (2012).