Imprint of Chiral Symmetry Restoration on the Polyakov Loop and Heavy Quark Free Energy

D. Clarke, O. Kaczmarek, F. Karsch, A. Lahiri, M. Sarkar

Universität Bielefeld

Lattice2021, 29 July 2021

 $m=\infty:$ deconfinement order parameter is Polyakov loop,

$$P_{\vec{x}} \equiv \frac{1}{N_c} \operatorname{tr} \prod_{\tau} U_4\left(\vec{x}, \tau\right), \qquad P \equiv \frac{1}{N_{\sigma}^3} \sum_{\vec{x}} P_{\vec{x}}.$$

Related to static quark-antiquark free energy,

$$\exp\left[-\frac{F_{q\bar{q}}(r,T)}{T}\right] = \langle P_{\vec{x}}P_{\vec{y}}^{\dagger}\rangle \approx \langle P\rangle^2 \quad \text{(large }r\text{)}.$$

Standard story:

- $\blacktriangleright \langle P \rangle = 0 \text{ confined.}$
- $\langle P \rangle \neq 0$ deconfined.
- Spontaneous \mathbb{Z}_3 breaking above T_d .

Away from the quenched limit

Seeming coincidence¹ of inflection points not seen closer to continuum limit^{2,3,4} and with physical or smaller m_l .

How to interpret Polyakov loop?

What influences its behavior, especially near chiral transition?

¹M. Cheng et al., Phys. Rev. D, 77.1, 014511 (2008).

- ²A. Bazavov et al., Phys. Rev. D, 93.11, 114502 (2016).
- ³D. Clarke et al., PoS(LATTICE2019), 194 (2020).
- ⁴H. Ding et al., Phys. Rev. Lett. 123.6, 062002 (2019).

D. A. Clarke

The Polyakov loop in the chiral limit

- Chiral limit: **no clear global symmetry** for deconfinement.
- ▶ P is purely gluonic \Rightarrow P invariant under chiral rotations.
- ► Take RG perspective near chiral transition point:
 - P is energy-like⁵ (effective coupling respects chiral symmetry).
 - Inherits behavior from energy-like scaling functions.
 - Chiral scaling in context: Anirban's talk.
 - More energy-like operators: Mugdha's talk.

Explore this idea analytically and numerically.

Simulation parameters:

- ▶ $N_f = 2 + 1$ HISQ action
- m_s fixed at physical point
- $\blacktriangleright N_s/N_\tau \ge 3$

⁵We are borrowing nomenclature from spin systems. Operators coupling to the symmetry-breaking parameter are magnetization-like.

- 1. Energy-like observables: $\langle P \rangle$ and F_q
- 2. C_V -like observable: Response of F_q to μ_B

- 1. Energy-like observables: $\langle P \rangle$ and $F_q^{6,7}$
- 2. C_V -like observable: Response of F_q to μ_B

⁶D. Clarke et al., Phys. Rev. D, 103.1, L011501 (2021).

⁷D. Clarke et al., Acta Phys. Pol. B Proc. Suppl. 14.2, 311 (2021).

RG parameters and observables of interest

$H \equiv m_l/m_s$	symmetry breaking param.
$t = (T - T_c)/T_c$	reduced temperature
$z\equiv z_0 t H^{-1/\beta\delta}$	scaling variable
$\langle P \rangle$	Polyakov loop
$F_q \equiv -T \log \langle P \rangle$	heavy quark free energy
$\frac{1}{T}\frac{\partial F_q}{\partial H} = -\frac{1}{\langle P \rangle}\frac{\partial \langle P \rangle}{\partial H}$	its derivatives ^{8,9}
$T_c \frac{\partial F_q/T}{\partial T} = -\frac{T_c}{\langle P \rangle} \frac{\partial \langle P \rangle}{\partial T}$	

 $^8 {\rm Expected}$ to be independent of renormalization. $^9 {\rm We}$ sometimes refer to $\partial_H F_q$ as a mixed susceptibility.

D. A. Clarke

F_q dependence on H

Assumption: P and F_q inherit behavior from 3d O(N) universality class¹⁰:

with universal free energy scaling function f_f and critical exponents α , β , and δ . Prime is derivative w.r.t. z. Can expand f_{reg}

$$f_{\mathsf{reg}}(T,H) = \sum_{ij} a^r_{i,2j} \ t^i \ H^{2j}.$$

HISQ quarks at fixed $N_{\tau} \Rightarrow$ use O(2) exponents

 $\beta = 0.3490, \quad \delta = 4.780, \quad \alpha = -0.017 \quad \Rightarrow \quad \frac{1-\alpha}{\beta\delta} = 0.61.$

¹⁰J. Engels and F. Karsch, Phys. Rev. D, 85, 094506 (2012).

Derivatives w.r.t. H more sensitive to H:

$$\frac{1}{T}\partial_H F_q(T,H) = -AH^{(\beta-1)/\beta\delta} f'_G(z) + \partial_H f_{\text{reg}}(T,H), \quad \frac{\beta-1}{\beta\delta} = -0.39$$

with order parameter scaling function f_G

$$f_G(z) = -\left(1 + \frac{1}{\delta}\right)f_f(z) + \frac{z}{\beta\delta}f'_f(z).$$

Expanding f'_G in z, setting H = 0, one finds

$$\left. \frac{1}{T} \partial_H F_q(T,H) \right|_{H=0} \sim \begin{cases} |t|^{\beta-1} & T < T_c \\ 0 & T > T_c \end{cases}$$

•

Results: $\partial_H F_q$

Singular part suggests 3-parameter fit:

H-derivative diverges as expected from scaling. T_c and z_0 consistent with previous determinations¹¹.

¹¹H. Ding et al., Phys. Rev. Lett. 123.6, 062002 (2019).

D. A. Clarke

Chiral Imprint on Polyakov Loop

Results: F_q dependence on T and H

Scaling plus regular behavior up to $\mathcal{O}(H^2)$ suggests 6-param fit:

$$\frac{F_q(T,H)}{T} \approx A H^{(1-\alpha)/\beta\delta} f'_f \left(z_0 \frac{T-T_c}{T_c} H^{-1/\beta\delta} \right) + a^r_{0,0} + a^r_{1,0} t + a^r_{2,0} t^2$$

Gold line: static-light meson contribution computed in HRG¹².

¹²A. Bazavov and P. Petreczky, Phys. Rev. D, 87.9, 094505 (2013).

D. A. Clarke

Chiral Imprint on Polyakov Loop

CRC-TR 211

Results: $\langle P \rangle$ at many different quark masses

Use best fit parameters from above and plug into $\langle P \rangle = e^{-F_q/T}$:

 $\langle P \rangle$ behavior in this (T, m_l) regime follows chiral scaling!

Specific-heat-like observables

$$T_c \frac{\partial (F_q(T,0)/T)}{\partial T} = a_{1,0}^r \left(1 + R^{\pm} |t|^{-\alpha}\right)$$

Spike in $\partial_T F_q$ in chiral limit: C_V -like.

- **1**. Energy-like observables: $\langle P \rangle$ and F_q
- 2. C_V -like observable: Response of F_q to μ_B

 μ is energy-like coupling. Can include in general energy-like coupling:

$$t \equiv \frac{1}{t_0} \left(\frac{T - T_c}{T_c} + \kappa \left(\frac{\mu}{T} \right)^2 \right)$$

With $\hat{\mu} \equiv \mu/T$ this leads to expectation

$$\chi_{Q,\mu_B^2} \equiv -\partial_{\hat{\mu}_B}^2 F_q / T \Big|_{\hat{\mu}_B = 0}$$

should also be C_V -like.

Preliminary: χ_{Q,μ_B^2} at varying m_l

Physical m_l agrees well with literature^{13,14}. $m_s/m_l = 40$ requires higher statistics.

 13 M. D'Elia et al., Phys. Rev. D, 100.5, 054504 (2019). 14 Vertical yellow band indicates T_c for $N_{\tau}=8.$

D. A. Clarke

 $\langle P \rangle$ observables are sensitive to chiral phase transition near critical point!

At fixed N_{τ} :

- ▶ $\partial_H F_q$ diverges as $H \to 0$ according to the 3d O(2) universality class.
- $\langle P \rangle$ is described well by 3d O(2) scaling function near T_c .
- ▶ $\partial_T F_q$ behaves qualitatively similarly as C_V in O(2) spin model.
- ▶ In process of investigating chiral behavior of χ_{Q,μ_P^2} .

In the continuum limit:

▶ Highly plausible that it is consistent with O(4).

Thanks for your attention.