
Targeting Performance
with Python

David A. Clarke

Z02 – Software Development Center

28 Jan 2022

Foreword

The purpose of this talk is to
‚ start thinking about computational speed in Python1

‚ and learn a little about parallelization.

I assume you can already do some scientific programming and that you
attended this year’s introductory Python talk . It will also help to
have attended the OOP talk .

This talk will be uploaded to Redmine , where you can find other ex-
cellent talks by the Software Development Center.

If you have questions or comments, please interrupt me!
1As usual, we use Python3 .

1/20

https://rmp.physik.uni-bielefeld.de/attachments/download/1687/2021.04.26.clarke.python.numpy.pdf
https://rmp.physik.uni-bielefeld.de/attachments/download/1991/2021.07.21.clarke.python.OOP.pdf
https://rmp.physik.uni-bielefeld.de/projects/z02/wiki/Pedagogical_Talks
https://www.python.org/downloads/

Outline

1 How fast is Python?
2 Parallelization strategies
3 Wrap-up

2/20

1 How fast is Python?
2 Parallelization strategies
3 Wrap-up

3/20

Thinking about time complexity

One way to judge speed of algorithm is time complexity. Express run
time as function of input size. Since run times are

‚ negligible for small input size and
‚ generally difficult to compute exactly as function of input size

we focus on asymptotic behavior. Usually expressed as

operation „ O(f(n))

for some function f of size n.

4/20

Some example time complexities

Commonly used complexities2 for lists and dictionaries:

Operation Complexity
append O(1)
length O(1)
store O(1)

construct O(len)
iterate O(n)

in O(n)

You can find more complexities here .
2It should be noted these are worst case estimates. For example when usingin to search these

objects, it turns out that dictionaries can be much faster than lists, and have an average complexity
O(1). This is because dictionaries are implemented using hash tables.

5/20

https://www.ics.uci.edu/~pattis/ICS-33/lectures/complexitypython.txt

Timing your code

This can be done straightforwardly with the time class:
import time

t0 = time.time()

some stuff...

t1 = time.time()

print("Took", t1-t0, "[s]")

Took 7.588989019393921 [s]

For measuring small bits of code, timeitmay be better alternative:
python3 -m timeit '"-".join(str(n) for n in range(100))'
10000 loops, best of 5: 30.2 usec per loop

6/20

Using numpy

As mentioned in the introductory talk , using built-in objects and
methods from numpy can give you a significant performance boost.
Make sure you are using

‚ numpy arrays, which are localized in memory
‚ built-in functions, which are parallel & implemented in C
‚ same with element-wise operations for arrays

Some detailed analysis here gives a better idea of what one has to
gain from using numpy.

7/20

https://rmp.physik.uni-bielefeld.de/attachments/download/1687/2021.04.26.clarke.python.numpy.pdf
https://towardsdatascience.com/how-fast-numpy-really-is-e9111df44347

1 How fast is Python?
2 Parallelization strategies
3 Wrap-up

8/20

One strategy: numba

In some situations, one can get a performance boostwith numba 3.
The idea is to use a just-in-time (JIT) compiler, i.e. the code is compiled
automatically right before you run it.

Presumably you don’t have this. (At least I didn’t.) Install it with
pip install numba

3Some simple examples usingnumba are here .
9/20

https://numba.pydata.org/
https://towardsdatascience.com/make-python-run-as-fast-as-c-9fdccdb501d4

One strategy: numba
Using numba is accomplished through a decorator, which is basically
a function that takes a function as argument and returns a function.

from numba import jit

nopython = True : Do not use Python interpreter
nopython = False: More flexible but slower

@jit(nopython=True) # jit decorator
def decorated_fuction():

Do some stuff...

So I just decorate and I’m done? Well, no. Best for functions that
1 mostly consist of math operations
2 with numpy4

3 and lots of loops
4Note that not allnumpy features are supported, however. A summary of what’s supported can

be found here . In this case, functions may need to be implemented in raw Python.
10/20

https://numba.readthedocs.io/en/stable/reference/numpysupported.html

A basic example

Let’s try one of the examples from here :
from numba import jit
import random
import numpy as np

@jit(nopython=True)
def monte_carlo_pi(nsamples):

acc = 0
for i in range(nsamples):

x = random.random()
y = random.random()
if (x ** 2 + y ** 2) < 1.0:

acc += 1
return 4.0 * acc / nsamples

11/20

https://towardsdatascience.com/make-python-run-as-fast-as-c-9fdccdb501d4

Another strategy: concurrent.futures
concurrent.futures5 givesonea lot of control over paralleliza-
tion. We use a pool of threads/processes, i.e. a set of threads/pro-
cesses always ready for use6. One creates an executor object whose
type depends on one whether would like a pool of threads or processes.

import concurrent.futures

executor=ThreadPoolExecutor(max_workers=8)
executor=ProcessPoolExecutor(max_workers=8)

After picking an executor, one uses map to delegate tasks:
def functionWithOneArgument (argument):
...

thingsFunctionRunsOver = [...]

executor.map(functionWithOneArgument , thingsFunctionRunsOver)

5Documentation can be found here .
6Maintaining a pool saves time creating/destroying threads/processes for short tasks.

12/20

https://docs.python.org/3/library/concurrent.futures.html

Threads or processes?

Each process gets its own memory space, while threads of a process
generally share memory. Which to use?

‚ Multiple threads are shared by a single CPU.
‚ For lightweight tasks, one CPU can easily execute two threads

simulataneously.
‚ For heavy tasks, one thread might spend CPU’s entire resources.

I alwaysparallelize usingprocesses7, sincemy slowest stuff ismathy and
I have easy access to machines with many processors.

7You may want to play around with it, it’s not necessarily the best strategy. Mileage may vary.
13/20

A basic example
import concurrent.futures

Let's add these arrays
a = [1,0,1,0,1,0,1,0,1]
b = [0,1,0,1,0,1,0,1,0]

indices = range(len(a))

Accomplished with loops.
c = [0,0,0,0,0,0,0,0,0]
for i in indices:

c[i] = a[i] + b[i]

def AplusB(i):
return a[i] + b[i]

Accomplished with concurrent.futures
with concurrent.futures.ProcessPoolExecutor(max_workers=8) as executor:

c_parallel = executor.map(AplusB, indices)
c_parallel = list(c_parallel)

c = [1, 1, 1, 1, 1, 1, 1, 1, 1]
c_parallel = [1, 1, 1, 1, 1, 1, 1, 1, 1]

14/20

Difficulty: Function has multiple arguments

Okay, but what if my function needs another argument?
import concurrent.futures

def raiseToPower(x, n):
return x**n

baseNumbers=[1,2,3,4,5,6,7,8]

with concurrent.futures.ProcessPoolExecutor(max_workers=8) as executor:
raisedNumbers = executor.map(... ?)

15/20

Possible solutions: Straightforward
Pass n in secret:

n=3
def raiseToPowerSecret(x):

return x**n

Be content with n’s default value:
def raiseToPowerDefault(x, n=2):

return x**n

Create a wrapper:
def raiseToPowerWrapped(x):

return raiseToPower(x,4)

Pass map an argument array of the same size8:
with concurrent.futures.ProcessPoolExecutor(max_workers=8) as executor:

raisedNumbers = executor.map(raiseToPower, baseNumbers, [2,2,2,2,2,2,2,2])
raisedNumbers = list(raisedNumbers)

8Thanks to Volodymyr for pointing out this possibility.
16/20

Possible solutions: Advanced

Use a class!
class powerRaiser:

def __init__(self, x, n):
self._x = x
self._n = n
with concurrent.futures.ProcessPoolExecutor(max_workers=8) as executor:

result = executor.map(self.raiseToPowerClass, self._x)
self._result = list(result)

def raiseToPowerClass(self, x):
return x**self._n

def getResult(self):
return self._result

pr = powerRaiser(baseNumbers, 2)
raisedNumbers = pr.getResult()
print(raisedNumbers)

17/20

Real-life jackknife example
class nimbleJack:

""" Class allowing for parallelization of the jackknife function. """

def __init__(self, func, data, nblocks, confAxis, return_sample, args, cov,
parallelize, nproc):

self._func=func
self._data=np.array(data)
...
if parallelize:

with concurrent.futures.ProcessPoolExecutor(max_workers=nproc) as
executor:

blockval=executor.map(self.getJackknifeEstimator , blockList)
...

def getJackknifeEstimator(self,i):
""" Gets ith estimator from throwing away jackknife block i. """
...

def getResults(self):
return self._mean, self._error

def jackknife(func, data, numb_blocks, conf_axis=1, return_sample, args=(),
cov=False, parallelize=True, nproc=8):

jk = nimbleJack(func, data, numb_blocks, conf_axis, return_sample, args,
cov, parallelize, nproc)

return jk.getResults()

18/20

1 How fast is Python?
2 Parallelization strategies
3 Wrap-up

19/20

Summary

When thinking about Python code:
‚ Be strategic about loop placement
‚ Use numpy’s built-ins
‚ Try parallelizing with numba
‚ Otherwise try with concurrent.futures
‚ Use time to see how well you did!

Thanks for listening!

20/20

