
OOP in Python
David A. Clarke

Z02 – Software Development Center

21 July 2021

Foreword

The purpose of this talk is to
‚ give a basic introduction to object oriented programming (OOP)
‚ in the context of Python1.

I assume you can already do some scientific programming and that you
attended this year’s introductory Python talk , but I don’t assumeyou
know object oriented programming.

This talk will be uploaded to Redmine , where you can find other ex-
cellent talks by the Software Development Center.

If you have questions or comments, please interrupt me!
1As usual, we use Python3 .

1/23

https://rmp.physik.uni-bielefeld.de/attachments/download/1687/2021.04.26.clarke.python.numpy.pdf
https://rmp.physik.uni-bielefeld.de/projects/z02/wiki/Pedagogical_Talks
https://www.python.org/downloads/

Outline

1 The OOP paradigm
2 Basic examples in Python
3 Operator overloading
4 Wrap-up

2/23

1 The OOP paradigm
2 Basic examples in Python
3 Operator overloading
4 Wrap-up

3/23

non-OOP programming

As a grad student I used Fortran77. Allows for
1 arrays or variables of some kind; and
2 functions acting on them.

Let’s call this non-OOP programming. OOP programming is a generaliza-
tion of this and has:

1 objects, i.e. runtime entities use memory and have addresses;
2 functions (methods) associated with objects; and
3 classes, i.e. abstractions (or blueprints) of objects. Classes do

not take up memory or have addresses.

4/23

The OOP paradigm

Maindifferencewithnon-OOPprogramming isusingarbitrary structures
instead of just arrays and variables. Some goals of the OOP paradigm:

‚ Representation: Try to make your code more closelymirror how
things look in the real world. (Is the thing you’re thinking of
easily imagined as a simple array or variable?)

‚ Organization: Collect methods and entities related to some
general idea. (Called encapsulation.)

5/23

The OOP paradigm

‚ Organization: Establish hierarchies of classes; one class may be a
special case of another. (Called inheritance. Not only
organizationally helpful, but also reduces code duplication.)

‚ Readability: Hide implementation details2 from the programmer,
minimizing what the programmer needs to provide. (Called
abstraction.)

The hope is that your code becomesmore intuitive, organized, and read-
able, which are all important for Clean Code!

2This can be a drawback when you need to know the implementation details exactly, because it
adds extra steps when you “look inside”. In my view this drawback is minor compared to benefits of
readability and ease of use.

6/23

1 The OOP paradigm
2 Basic examples in Python
3 Operator overloading
4 Wrap-up

7/23

Anatomy of a CAT
You can think of a class as a collection of attributes and methods.

class CAT:

"A class for good cats."

Constructor method
def __init__(self, name):

CAT's instance attributes
self._name = name
self._isHungry = True
self._stomachContents = ""
print("And the Lord said 'Let there be "+self._name+"'.")

Destructor method
def __del__(self):

print(self._name+" has perished.")

A custom user-defined method
def ignore(self):

print(self._name+" ignores User...")

An object is an instantiation of a class.
print("User says 'hello' to "+niclai._name+".")

8/23

Anatomy of a CAT

Besides ignoring people, the only other things cats do are eat andmeow.
We can add this functionality to our class.

def eat(self, food):
if(self._isHungry):

print(self._name+" eats "+food+".")
self._stomachContents = food
self._isHungry = False

else:
self.ignore()

def speak(self):
print(self._name+" says 'meow'.")

def areYouHungry(self):
if self._isHungry:

self.speak()

9/23

Typical CAT behavior

Our CAT class, saved in cat.py, can be imported3 and used in our
main code. Use __doc__ to access the description. The constructor
is called when niclai is instantiated.

from cat import *

print(CAT.__doc__)

niclai = CAT("Niclai")
print("User says 'hello' to "+niclai._name+".")
niclai.speak()
print("User asks if "+niclai._name+" is hungry.")
niclai.areYouHungry()
print("User gives "+niclai._name+" some savory salmon.")

A class for good cats.
And the Lord said 'Let there be Niclai'.
User says 'hello' to Niclai.
Niclai says 'meow'.
User asks if Niclai is hungry.
Niclai says 'meow'.

3In the folder of your class, you will need an empty__init__.py file.
10/23

Typical CAT behavior

The destructor is called automatically when the program ends4.
print("User gives "+niclai._name+" some savory salmon.")
niclai.eat("savory salmon")
print(niclai._name+" is full of "+niclai._stomachContents+".")
print("Here "+niclai._name+" have some more fish.")
niclai.eat("savory salmon")
print("Alright then.")

User gives Niclai some savory salmon.
Niclai eats savory salmon.
Niclai is full of savory salmon.
Here Niclai have some more fish.
Niclai ignores User...
Alright then.
Niclai has perished.

4The destructor will also be called if the object loses its reference, for example through
reassignment. Trycat=CAT("A") followed by cat=CAT("B") in the interpreter. Thanks to
Alessandro for pointing this out!

11/23

Inheritance

Inheritance is the process by which a class (the child class) inherits at-
tributes and methods from a more general class (the parent).

class MEANCAT(CAT):

"A class for naughty cats."

def speak(self):
print(self._name+" says 'HISS'!")

In the above we overwrote the speak method. MEANCAT speak
is different than for CAT. We could have also added further attributes
or methods.

12/23

Inheritance

If a cat is poorly behaved, remember that you can always destroy it by
calling the destructor explicitly.

silky=MEANCAT("Silky")
print("User gives "+silky._name+" some tasty tuna.")
silky.eat("tasty tuna")
print(silky._name+" is full of "+silky._stomachContents+".")
print("Did you like that?")
silky.speak()
print("Wow "+silky._name+" that's rude. Begone!")
del silky
print("Much better.")

And the Lord said 'Let there be Silky'.
User gives Silky some tasty tuna.
Silky eats tasty tuna.
Silky is full of tasty tuna.
Did you like that?
Silky says 'HISS'!
Wow Silky that's rude. Begone!
Silky has perished.
Much better.

13/23

1 The OOP paradigm
2 Basic examples in Python
3 Operator overloading
4 Wrap-up

14/23

Operator overloading

Operator overloading5 is where a binary operator such as+ is general-
ized to work for multiple types of operands.

‚ For instance+ already works with strings and floats.
‚ We can e.g. createSU(2)matrices and extend+ so that it

also works with such objects.
‚ Helps code more closely mirror math notation.

5Operator overloading is a special case of polymorphism, where a function’s implementation
changes depending on the function arguments.

15/23

Example: SU(2)matrices

You can hide6 attributes from being accessed from main by using __.
pass can be used as a placeholder.

class SU2:

"SU2 group elements as matrices."

def one(self):
self.__e00=complex(1.,0.)
self.__e01=complex(0.,0.)
self.__e10=complex(0.,0.)
self.__e11=complex(1.,0.)

def __init__(self):
self.__e00=complex(1.,0.)
self.__e01=complex(0.,0.)
self.__e10=complex(0.,0.)
self.__e11=complex(1.,0.)

6I think it is still possible to access these attributes, but not straightforwardly.
16/23

Example: SU(2)matrices

To access matrix elements from main, we create accessors that en-
force that the matrix elements are complex7.

def setElement(self, k, l, value):
if k==0 and l==0:

self.__e00 = value+0j
elif k==0 and l==1:

self.__e01 = value+0j
elif k==1 and l==0:

self.__e10 = value+0j
elif k==1 and l==1:

self.__e11 = value+0j
else:

print("setElement: ERROR--invalid component.")
exit(-1)

7Otherwise the user might accidentally overwrite, e.g.,e00 as afloat, changing its type and
possibly destroying some functionality.

17/23

Example: SU(2)matrices

In pythoneachbinaryoperator hasaspecial functionname, like__add__8.
To overload the+ operator we create the following method.

def __add__(self,other):
g = SU2()
g.setElement(0,0,self.__e00+other.__e00)
g.setElement(0,1,self.__e01+other.__e01)
g.setElement(1,0,self.__e10+other.__e10)
g.setElement(1,1,self.__e11+other.__e11)
return g

By editing the __str__ function, we can control how our object is
output to screen whenever it is passed to print.

def __str__(self):
return (f"{self.__e00} {self.__e01}\n"

+f"{self.__e10} {self.__e11}")

8A table of all special function names for operator overloading can be found here .
18/23

https://www.programiz.com/python-programming/operator-overloading

Example: SU(2)matrices

Here we can see that access to the hidden attributes of our SU(2)
class is blocked, as desired.

print(g.__e00)

Traceback (most recent call last):
File "exampleCode/SU2.py", line 55, in <module>

print(g.__e00)
AttributeError: 'SU2' object has no attribute '__e00'

19/23

Example: SU(2)matrices

Note that= is implementedbydefault9. Wecanmanipulateg andh just
as typicalSU(2)matrices. setElement recasts2 tocomplex
as desired.

h = g
s = g + h
print(s)
g.one()
print(g)

g = SU2()

(4+0j) 0j
0j (2+0j)
(1+0j) 0j
0j (1+0j)

9One must be careful here, because this is not a copy constructor, but ratherh andg are now
references for the same object. So if one changesh,gwill change as well. Thanks to Alessandro for
pointing this out.

20/23

1 The OOP paradigm
2 Basic examples in Python
3 Operator overloading
4 Wrap-up

21/23

Summary

Utilize the power of OOP to:
‚ Make your codemirror your mind.
‚ Help keep your code organized.
‚ Minimize repetition.
‚ Make your code easy to read and use.

Here are also some helpful resources for
‚ Python OOP
‚ Operator overloading in Python

22/23

https://www.programiz.com/python-programming/object-oriented-programming
https://www.programiz.com/python-programming/operator-overloading

A look ahead...

Possible topics for the next lecture:
‚ scipy
‚ Parallelization
‚ Unix-like file manipulation
‚ Testing, logging, error handling
‚ Parameter files and command line arguments

Thanks for listening!

23/23

